Die gegenseitigen Beziehungen der physikalischen und chemischen Eigenschaften der chemischen Elemente und Verbindungen

von

Hermann Fritz,

Professor am Eidgenössischen Polytechnicum in Zürich.

(Mit 2 Textfiguren.)

(Vorgelegt in der Sitzung am 17. Juni 1892.)

Vorwort.

Die eigenthümliche Verschiedenheit der Festigkeit bei den verschiedenen Körpern veranlassten den Verfasser, im Jahre 1869 eine Studie darüber zu beginnen, in welcher Weise die Festigkeit von den übrigen Eigenschaften der Körper abhängig sein möge, da anzunehmen war, dass in dieser Beziehung die Natur nicht gesetzlos sei.

Zunächst lag die Vermuthung nahe, dass die Festigkeit in gewisser Beziehung zu der Dichtigkeit stehe, wenn für die Cohäsion ähnliche Gesetze angenommen werden dürften, wie sie für die Attraction erkannt wurden, oder wenn man gar ein und dieselbe Kraft als Ursache beider Erscheinungen nehmen könne; eine solche Vermuthung lag nahe, trotzdem Physiker längst lehrten: Die Festigkeit steht in keiner Beziehung zur Dichte. Scheinbar ist dies allerdings der Fall; es haben Eisen und Zinn nahe gleiche Dichten, aber sehr ungleiche Festigkeiten; das leichte Aluminium ist relativ fest, das dichte Blei sehr wenig fest; die so ungleich dichten Metalle Kupfer und Platin nähern sich in den Festigkeiten u. s. w.

¹ Vergl. u. A. Mousson, Physik auf Grundlage der Erfahrung, I. Aufl., Zürich 1858, 8.

Nachdem die einfache Formel:

$$K = 100\Delta \left(\frac{\alpha}{\epsilon}\right)^2$$

(vergl. S. 758) den Beziehungen zwischen der Festigkeit und anderen Eigenschaften der Körper genügeleistend sich zeigte, lag die Versuchung nahe, auf dem eingeschlagenen Wege weiter zu forschen. Das Resultat ist für die wichtigsten und einige weitere Fälle in dem Texte wiedergegeben. Manche der gegebenen Beziehungen der physikalischen und chemischen Eigenschaften in ihrer Gegenseitigkeit und manche der Formeln können nur auf die Annäherung Anspruch machen; alle aber zeigen, dass auf dem eingeschlagenen Wege ein Einblick in die Natur einer Reihe der Beziehungen der Eigenschaften der Körper untereinander ermöglicht wird, dass der Weg dadurch angebahnt scheint, der zum tiefern Eindringen in die Theorien über die Constitution der Körper einzuschlagen empfehlenswerth ist. Leider erfordert die weitere Verfolgung derartiger Aufgaben ein Maass an Zeit, das dem Verfasser nicht zur Verfügung steht und fehlen vor Allem zu derartigen Untersuchungen die mannigfaltigsten Beobachtungsresultate noch vollständig, oder es bedürfen die vorliegenden weiterer eingehender Prüfungen um die Richtigkeit der Annahmen oder der Resultate bestätigen zu können oder um sie verwerfen zu müssen. Vor Allem sollten die einzelnen Körper an einzelnen bestimmten Stücken in Bezug auf alle Eigenschaften untersucht werden; nicht aber eine jede Eigenschaft an einem anderen Stücke, da je nach der chemischen Reinheit, nach der Bearbeitung u. s. w. die Resultate oft sehr abweichend, ja sogar sehr unbrauchbar werden.

Die Beziehungen $K=100\Delta\left(\frac{\alpha}{\epsilon}\right)^2$ wurden aufgefunden am 14. Jänner 1870 und veröffentlicht in: Vierteljahrsschrift der Naturf. Gesellschaft in Zürich 1871, B. XVI.

Die Beziehungen $As.\Delta s\sqrt[3]{\frac{A}{\Delta}}=\sqrt[3]{\frac{T.\Delta s}{1\cdot 28}}$ wurden in der Form $As.\Delta s=\sqrt[3]{ts}$ veröffentlicht in: Berichten der deutsch. chemischen Gesellschaft 1884, Jahrgang XVII, Heft 14, Nr. 490,

dann in jetziger Form (vom 1. September (1887) in: Naturwissensch. Rundschau, Jahrg. II, Nr. 44, October 1887.

Einige der übrigen Beziehungen wurden nebenbei in diversen Schriftwerken berührt.

Den Gestirnen des Himmels entlauschte die Jahrtausende lang mit Ausdauer fortgesetzte Beobachtung die Gesetze, nach welchen sie im Weltraume kreisen, die Gesetze, nach welchen sich die Systeme der Weltkörper erhalten. Die Beobachtung löste die Aufgabe, trotzdem die an sich einfachen Bahnen der Planeten, Kometen, Meteoriten und Sterne infolge des beweglichen Standpunktes scheinbar oft sehr verworren sind. Von anfangs bescheidenen Erfolgen gelangten die nicht rastenden Beobachter und Physiker, namentlich Copernicus, Kepler und Newton zur Erkenntniss der Bewegungsgesetze und ihrer Ursache. Man erkannte nicht nur die merkwürdige Einfachheit des Weltenbaues hinsichtlich der Bewegung der einzelnen Weltkörper: die Gesetze ermöglichten auch die Bestimmung der Entfernungen und Massenwerthe derselben und gestatteten den weiteren Ausbau der Erkenntniss im Weltenbaue und selbst die Auffindung neuer Glieder der Systeme auf dem Wege der Berechnung - Neptun, Siriusbegleiter u. dergl.

Die Entwickelung des heutigen Wissens über die physikalischen und chemischen Beziehungen der die Weltkörper bildenden einfachen Stoffe (Elemente) und deren Verbindungen untereinander gestattete wohl die Einsicht in eine ganze Reihe theils wichtiger, theils interessanter Beziehungen und Gesetze, ohne dass es gelungen wäre den Schleier über dem Gesammtmechanismus zu lüften, ohne einen Einblick in ähnlicher Weise in die Beziehungen der kleinsten Theilchen zueinander zu erhalten, wie dies für die Weltkörper im Grossen der Astronomie möglich wurde.

Wie einstens nach Copernicus' und Kepler's Entdeckungen die Gesetze der Planetenbewegungen durch ihre Einfachheit in Erstaunen setzten, so wird möglicherweise es zukünftig, nach der Auffindung, gleichfalls überraschen, wie einfach die Gesetze der gegenseitigen Beziehungen auch der kleinsten Körperelemente hinsichtlich ihrer gesammten Eigenschaften sich erweisen. Ebensowenig aber als Kepler und Newton ihre Gesetze aus den Beobachtungen der Bewegungen einzelner Körper von Sternhaufen ihrer verwickelten Bahnen halber abzuleiten vermocht hätten, sondern von dem einfachsten zu den zusammengesetzteren Systemen übergehen konnten, da ihnen glücklicherweise die Natur die Beobachtung der Planetenund Mondbewegungen gestattete, ebensowenig wird es rathsam sein an zusammengesetzten chemischen Verbindungen oder gar an organischen Gebilden die verschiedenartigsten Beziehungen und Gesetze ableiten zu wollen. Derartige Studien müssen umsomehr an einfachen Körpern begonnen werden, als nicht die günstigen Verhältnisse in der Constitution der Körper und Körperbestandtheile herrschen können, wie bei den im Weltraume weit von einander sich bewegenden Weltkörpern. Im Weltraume sind, vorab im Sonnensystem, die Massen in grossen Entfernungen von einander derartig vertheilt, dass die Störungen verhältnissmässig gering, vielfach vernachlässigbar werden, während bei den Körpern die Störungen der sich sehr nahe liegenden Moleküle und Atome sehr gross werden, wie dies schon aus den Veränderungen der Eigenschaften eines Stoffes durch Zuführung oft nur geringer Quantitäten eines andern Stoffes hervorgeht.

Stellt man sich die Körper aus Molekülen, diese aus Atomen und diese vielleicht wieder aus Theilchen höherer Ordnungen zusammengesetzt vor, dann lässt sich die Berechtigung der Annahme der Zusammensetzung der kleinsten Massen und deren bleibendes Bestehen nach einfachen Gesetzen rechtfertigen. Nach herrschender Anschauung legt man den die Körper bildenden kleinsten Theilchen Bewegungen bei. Obwohl auch andere Anordnungen denkbar sind, spricht die Unmöglichkeit der Beobachtung solcher Bewegungen nicht dagegen. Die besten Fernrohre zeigen ja selbst in den Sternhaufen keinerlei Bewegung, trotzdem solche in hohem Masse vorhanden sein muss. Hier, wie bei der Körperwelt, fehlen dem Menschen die entscheidenden optischen Hilfsmittel.

Bestünden die Molekel aus wenigen Atomen, die Körper nur aus wenigen Molekeln, und wären dieselben je durch grosse Zwischenräume getrennt, dann könnte man die Berechnungen in ähnlicher Weise versuchen wie bei den Planeten oder andern Weltkörpern. Allerdings hätte man an die Stelle der Attraction und der Tangentialkraft die Cohäsion und die derselben entgegenwirkende Wärme zu setzen. Der Wirklichkeit entspricht bei festen und flüssigen Körpern bestimmt und bei den Gasen wahrscheinlich nicht eine solche Annahme, wodurch die Aufgabe eine weit schwierigere würde. Will man aus den bei einem Planeten beobachteten Störungen auf die Bahn eines unbekannten störenden Körpers schliessen, dann hat man mit 13 Unbekannten — 6 Elementen der gestörten, 6 Elementen der störenden Planeten-Bahn und die Masse des störenden Körpers - zu rechnen. Werden beide Bahnen in einer Ebene liegend angenommen, dann bleiben noch 9 Unbekannten übrig. Ja selbst bei gegebenen Bahnen sind derartige unter dem Namen »das Problem der drei Körper« bekannten Aufgaben nicht direct lösbar, auch wenn die Massen der umlaufenden Körper klein gegenüber der Centralmasse sind. Treten weitere anziehende Massen hinzu oder bewegen sich die Körper um mehrere, anstatt um einen Centralkörper, dann werden die Bewegungen derartig complicirt, dass nur in wenigen und einfacheren Fällen die Bahnen zu bestimmen sind. In einem Sternhaufen gestatten die ietzt bekannten Hilfsmittel die theoretische Verfolgung der Bahnen nicht. Weit complicirter wird somit die Verfolgung der Vorgänge in körperlichen Massen sein, welche aus einer grossen Anzahl von Molekeln und diese wieder aus Atomen bestehen. Eine Vorstellung der Bewegungen im Körpertheilchen lässt sich nur unter angenommenen Vereinfachungen machen; eine theoretische Darstellung derselben ist unmöglich, wenn man sich nicht auf die einfachste Annahme beschränken will. Vorläufig bleibt man angewiesen auf empirische Ergründung der bestehenden Gesetze, deren Begründung möglicherweise im Laufe der Zeiten erfolgt. Alle analytischen Behandlungen zur Auffindung der bestehenden Gesetze sind mit dem Fehler von Voraussetzungen behaftet, welche nur aus Analogien gefolgert und oft willkürlich ergänzt werden müssen. Ist auch nur eine Annahme nicht naturgemäss, dann fällt das ganze Gebäude in sich zusammen; nur zufällig wird man zu naturgemässen Schlüssen gelangen. Dazu kommt, dass die analytische Behandlung auf sehr schwierige oder geradezu unlösbare Aufgaben stösst. Ein vortreffliches Beispiel eines derartigen Problems und dessen Lösbarkeit bietet F. Redtenbacher's »Dynamiden-System«, Mannheim 1857, 4°, als Grundzüge einer mechanischen Physik, welche anstrebt als Grundlage für das gesammte Gebiet der Physik und damit auch der Chemie zu dienen. Gedrängt spricht sich der Verfasser am Schlusse der Einleitung, S. 25, über die Schwierigkeiten aus. Die Grösse der Aufgabe und die Schwierigkeit deren Lösung ergibt sich sofort, wenn man die Fundamente durchgeht, auf welchen der Verfasser aufbaut; die trotz aller Sorgfalt in der Auswahl der Annahmen über die Eigenschaften der Bildung und beherrschenden Gesetzen der Atome und Moleküle hervortretende Willkürlichkeit muss sofort die Richtigkeit mancher Resultale in Frage stellen.

Einfacher stellt sich die Aufgabe, wenn man auf mehr empirischem Wege, unter Festhalten an geeignet scheinenden Vorstellungen zu den Gesetzen und dann zu deren Begründung zu gelangen sucht, entsprechend wie sich in der Astronomie nach Ergründung der Bewegungsgesetze durch Kepler die Begründung durch Newton entwickelte. Auf diesem Wege wird die Lösung auch scheinbar sehr schwieriger Aufgaben möglich. Ohne die vorhergegangene Auffindung der gegen Erwarten einfach sich erwiesenen Bewegungsgesetze aus den scheinbar so zusammengesetzten Planetenbewegungen wäre das noch einfachere Attractionsgesetz niemals aufgefunden worden.

Ordnet man die chemischen Elemente nach ihren Atomvolumina, dann machen sich schon theilweise die verwandten Gruppirungen geltend, wie sie von Newland, Mendeljeff, L. Mayer, V. Mayer u. A. aus den Atomgewichten und aus dem chemischen Verhalten zu ermitteln versucht wurden; es zeigt sich aber auch sofort und weit klarer als bei der Ordnung nach Atomgewichten unverkennbar das Bestehen einer Reihe von gesetzmässigen Beziehungen der Eigenschaften der verschiedenen Elemente untereinander. Im Anfange stehen die Elemente mit den höchsten Schmelztemperaturen und Festig-

keiten: Kohlenstoff und Bor; dann folgen die magnetischen, durchweg festen und zähen Metalle: Nickel, Kobalt, Mangan, Kupfer, Eisen, Chrom, dann die Platinmetalle mit hohen Schmelztemperaturen und geringerer Festigkeit; es treten in Beziehung Phosphor, Schwefel, Arsen und Selen; es vereinigen sich die Halogenen Jod, Brom und Chlor, dann wieder die Verwandten Barium und Strontium u. s. w., vor Allem aber nehmen durchweg mit zunehmendem Atomvolumen und mit abnehmenden Werthen der relativen Wärme Schmelztemperaturen wie die Festigkeiten der Elemente ab. Die Reihe beginnt mit dem festen Diamanten, den harten Borkrystallen und endigt mit den weichen Alkalimetallen, wie folgende Zusammenstellung zeigt, in welcher die Atomgewichte mit A, die Dichtigkeiten mit Δ (Atomvolumen durch $\frac{A}{\Lambda}$), mit s die specifische Wärme bei gewöhnlicher Temperatur (Δs die relative Wärme = specifische Wärme, bezogen auf die Volumeneinheit) bezeichnet sind.

	Elemente	$rac{A}{\Delta}$	2 s	Elemente	$rac{A}{\Delta}$	Δs
	Kohlenstoff	3.43	0.37	Wolfram	9.51	0.69
	Komenston)	5.45	0.60	Gold	10.09	0.62
	Bor	4.22	0.65	Silber	10.26	0.60
	poi	4.33	0.61	Aluminium	10.43	0.57
	Dografiam S	4.33	0.95	Molybdän	11.16	0 62
	Beryllium \dots {	5:55	1.22	Silicium	11.32	0.42
1	Nickel	6.52	0.95	Lithium	11.86	0.56
	Kobalt	6.68	0.94	Uran	12.83	0.52
)	Mangan	6.85	0.96	Kadmium	13.02	0.47
	Kupfer	$7 \cdot 11$	0.85	Arsen	13.16	0.31
1	Eisen	7:17	0.87	Alsen	15.95	0.43
1	Chrom	7.69	0.75	Germanium	13.21	0.41
1	Rhodium	8.53	0.71	Gallium	13 25	0.46
1	Iridium	8.62	0.78	Magnesium	13.80	0.44
	Ruthenium	8.66	0.73	Quecksilber	14.71	0.44
	Osmium	8.71	0.70	Hiobium	14.92	0.42
1	Palladium	8.87	0.71	Indium	$15 \cdot 33$	0.42
(Platin	9.01	0.70	Schwefel	15.61	0.36
	Zink	9.07	0.68	[Arsen	15.95;	
	Titan	9.08	0 69	Phosphor im Mittel .	15.42]	
	Vanadium	9.25	0.69	Zinn	16.39	0.40

Elemente	$\frac{A}{\Delta}$ Δs	Elemente $\frac{A}{\Delta}$	$\Delta_{\mathcal{S}}$
Tantal 16	· 89 0·38	Calcium25 · 47	0.27
Thallium	1.14 0.40	Jod25 · 71	0.27
Phosphor $\begin{cases} 17 \\ 13 \end{cases}$	•43 0.31	Chlor25 82	0.25
1 nosphot	•42 0 • 40	(Brom	0.26
Antimon	•91 0.33	Strontium34.68	0.19
Selen	95 0.35	Barium 36.05	0.18
Blei	12 0.35	Kalium45.58	0.15
Tellur	. 28 0.32	Rubidium 56.15	0.12
Thorium	.91 0.30	Cäsium70.59	0.08
Wismuth 21	.22 0.30	Chlor, Gas14.76	0.297
Cerium 21	.79 0.30	Fluor14.47	0.351
Zirkon 21	81 0.29	Wasserstoff14.49	0.238
Didym22	.31 0.30	Sauerstoff14·32	0.242
Lanthan	.35 0.28	Stickstoff14.44	0.237
Natrium	.61 0.28		

Wenn auch manche den Eigenschaften nach nahe verwandten oder in der Natur häufig zusammen vorkommenden Stoffe in der Zusammenstellung getrennt stehend erscheinen, so tritt doch in den Zahlen eine gewisse Verwandtschaft hervor. Es weichen bei Arsen und Phosphor, je nach dem Zustande die Werthe von $\frac{A}{\Delta}$ stark ab. Nimmt man die ebenfalls in der Tabelle eingetragenen Mittelwerthe, dann ist $\frac{A}{\Delta}$ bei Phosphor 15·42, bei Arsen 15·95, bei Schwefel 15·65. An den grösseren Werth von Phosphor schliesst sich Selen an — Phosphor 17·43, Selen 17·95. Die in ihrem Verhalten gewisse Ähnlichkeit zeigenden Schwefel, Selen und Tellur haben die Werthe $\frac{A}{\Delta} = 15\cdot61$, 17·95 und 20·28, wobei das Mittel $\frac{15\cdot61+20\cdot28}{2} = 15\cdot61$, 17·95 und 20·28, wobei das Mittel $\frac{15\cdot61+20\cdot28}{2} = 15\cdot61$

= 17.95 ist. Für die Alkalimetalle ist

$rac{A}{\Delta}$	Δs	
Lithium	0.56	
Natrium23.61 = $2.11.8$	0 28	0.56:2 = 0.280
? $34.60 = 3.11.5$	0.19	0.56:3 = 0.186
Kalium45.58 = $4.11.4$	0.15	0.56:4 = 0.140
Rubidium $56.12 = 5.11.2$	0.12	0.56:5 = 0.112
Cäsium $70.59 = 6.11.7$	0.09	0.56:6 = 0.093

Die augenscheinliche Verwandtschaft letzterer Zahlenwerthe könnte durch geringe Änderungen der Werthe von Δ und s noch erhöht werden.

Nebenbei sei hier auf das vielfache Vorkommen von Elementen, in der Natur nebeneinander, deren Atomvolumen nahe gleich sind oder in einfachen Verhältnissen stehen, so z. B. Tellur, Silber und Gold (Tellurgold) mit den Atomvolumina 20·3, 10·3 und 10·1, Selen und Blei (Selenblei), beide nahe 18. Schwefel mit Kupfer, Eisen, Kobalt, Nickel, Mangan, nahe 16 gegen 7 bis 8, Arsenik mit Eisen, Kobalt, Nickel, ähnlich wie vorher u. s. w., hingewiesen.

Wie vorher bemerkt, ordnen sich im Allgemeinen die angeführten Elemente nach abnehmender Festigkeit bei abnehmender Schmelztemperatur.

Stellt man die einfache Formel für die Festigkeit

$$K_1 = \frac{(t-100)s}{3} = \frac{(T-373)s}{3}$$
 ...(I)

auf, wenn K die absolute Festigkeit (Zugfestigkeit) in Kilogramm pro Quadratmillimeter, t die Schmelztemperatur vom Eisschmelzpunkte, T die Schmelztemperatur vom natürlichen Nullpunkte gerechnet und s die specifische Wärme bei gewöhnlicher Temperatur bezeichnet, dann erhält man

	Berechnete	Beobachtete	Wertl	ne von
Metalle	Werthe von K_1	Werthe von K	t	2
Eisen	. 57	30-50	1500°	0.1115
Kupfer	. 29	20 - 36	1060	0.0959
Palladium .	. 27	27	1500	0.0590
Platin	. 18	24 - 36	1780	0.0325
Silber	. 16	16-30	950	0.0570
Gold	. 10	10-30	1050	0.0320
Zink	. 10	5 - 16	430	0.0940
Kadmium	. 4.8	2.3-4.8	500	0.0550
Antimon	. 5.7	0.65 - 0.70	440	0.0492
Zinn	. 2.4	1.7-4.3	235	0.0548
Blei	. 2.4	$1 \cdot 3 - 2 \cdot 4$	330	0.0310
Wismuth	. 1.8	0.97	275	0.0308

Durchweg stimmen die berechneten und beobachteten Werthe von K innerhalb der Beobachtungsgrenzen überein. Ferner erhält man noch bei

	Berechnete	Beobachtete	Wert	the von
Metalle	Werthe von K_{1}	Werthe von K	t	·S
Chrom	60	?	1500	0.1100
Nickel	48	fester als Eisen	1500	0.1056
Kobalt	49	zäher als Eisen	1600	0.1067
Iridium	21	?	1950	0.0350
Selen	2.9	weich	217	0.0880

u. s. w.

Die absolute Festigkeit des Diamanten und der Bergkrystalle muss nach obiger Formel sehr gross ausfallen, da dieselben nicht geschmolzen werden konnten. Für Quecksilber ergibt sich die Festigkeit zu —1.5, was nicht widerspricht. Die Werthe, welche für zusammengesetzte oder legirte Metalle erhalten werden, entsprechen durchweg der Erfahrung. Man erhält für

Stahl den Werth von
$$K_1 = 65$$
 Messing * * * = 23 Bronze * * * = 24 u.s. w.

Für einzelne Metalle und Verbindungen stimmt diese einfache Formel nicht. Man erhielte beispielsweise für Aluminium $K_1=43\ kg$ pro Quadratmillimeter oder einen 3—5 fach zu grossen Werth, für Gusseisen 40—45 kg, was der Druck-, aber nicht der Zugfestigkeit entspricht. Für Gallium, Natrium, Kalium und hellen Phosphor würden die Festigkeitswerthe negativ, was wieder bei Brom und noch mehr bei Chlor stimmt.

Änderungen der Constanten würden die Formel der Wirklichkeit in einzelnen Fällen etwas mehr anschliessen; vollständig ist dies mit der einfachen Form der Formel nicht möglich, wie schon aus den Zahlen der letzten Zusammenstellung hervorgeht. Ausnahmen können nicht vermieden werden.

Auch unter Benützung der Werthe für die relative Wärme (Δs) lassen sich ziemlich annähernd die Festigkeitswerthe darstellen. Setzt man beispielsweise

$$K_2 \equiv 60.\overline{\Delta s^3},$$
 ...(II)

dann erhält man für

Eisen K_2	41
Kupfer	32
Platin	19
Palladium	18
Silber	12
Gold	14
Aluminium	11
Zink	18
Zinn	4
Kadmium	7
Blei	3
Wismuth	2
Antimon	2

Diese Zahlen sind theilweise noch günstiger als diejenigen nach der vorhergehenden Formel; entsprechend jener zeigen sie indessen auch Abweichungen.

Da ferner die Festigkeit mit wachsendem Atomvolumen durchweg abnimmt und, nach Vorhergehendem, die absolute Festigkeit proportional den Producten aus der Schmelztemperatur und der specifischen Wärme, wie auch aus Dichte und letzterer im Allgemeinen ist, so muss eine Gesetzmässigkeit hier nahe liegen.

Setzt man unter der sich nachher begründeter zeigenden Annahme, dass die Festigkeit proportional der Dichte (Δ) und umgekehrt dem Quadrate des Atomdurchmessers $\left(\sqrt[3]{\frac{A}{\Delta}}\right)^{\frac{7}{2}}\right)$, dividirt durch einen Werth x^2 , welcher der Wärmewirkung und den Anziehungsverhältnissen in einem dicht geschlossenen System entspricht, so dass entsprechend der Anziehung der Gesammtmassen $K=\beta$. $\frac{\Delta}{R^2}$, wenn β ein Coëfficient der Anziehung, der nachher in den Werth von x eingeschlossen wird und $R^2=\left(\frac{A}{\Delta}\right)^{\frac{2}{3}}:x^2$ oder $x=\left(\frac{A}{\Delta}\right)^{\frac{1}{3}}:R$, dann findet sich, dass man den Werth

$$x = 1.4 \sqrt[3]{\frac{\Delta}{A} \cdot Ts}$$

setzen kann.

Es wird nämlich, wenn man für die verschiedenen Metalle die Werthe von Δ und K einsetzt, den Werth von β in x einschliesst, bei

R	$x = \left(\frac{A}{\Delta}\right)^{\frac{1}{3}} : R$	$1\cdot 4\sqrt[3]{\frac{\Delta}{A}\cdot Ts}$
Eisen0·43	4.5	$4 \cdot 3$
Aluminium0·47	4.7	4.8
Kupfer 0 · 52	3.7	3.7
Silber0.64	$3\cdot 4$	4.4
Palladium0.67	3.1	$3 \cdot 2$
Zink0.77	2.7	2.7
Platin 0 · 80	2.6	2.6
Gold0.98	2 • 2	$2 \cdot 2$
Blei2.39	1.10	1 • 4
Antimon3.09	0.84	1.5
Wismuth3.13	0.90	1.0

u. s. w.

Somit lässt sich setzen in

$$\left(\frac{A}{\Delta}\right)^{\frac{1}{3}} = x \cdot R$$
 $x = 1.4 \sqrt[3]{\frac{\Delta}{A} \cdot Ts}$

und

$$K_3 = \frac{\Delta}{\left(\frac{A}{\Delta}\right)^{\frac{2}{3}}} : \left(1 \cdot 4 \sqrt[3]{\frac{\Delta}{A} Ts}\right)^2 = 2 \cdot \frac{\Delta \cdot \overline{Ts}^{\frac{2}{3}}}{\left(\frac{A}{\Delta}\right)^{\frac{4}{3}}} \cdot \dots (III)$$

Diese Formel (III) ergibt die Werthe

für	K_3 (berechnet)	gegenüber K (beobachtet)
Eisen	41	30 - 50
Kupfer	32	20 - 36
Platin	. 37	24 - 36
Palladium	. 29	27
Silber	. 21	16 - 30
Gold	. 21	10 - 30
Aluminium	. 9	8 - 12
Zink	. 1.2	5 - 16
Zinn	. 3.0	$1 \cdot 7 - 4 \cdot 3$
Kadmium	. 6.1	2 • 3 - 4 • 8
Blei	. 3.3	$1 \cdot 3 - 2 \cdot 4$
Wismuth	. 1.3	0.97

für	K_3 (berechne	t) gegenüber K (beobachtet)
Antimon		0.65 - 0.70
Nickel ¹	. 48	fester als Eisen
Kobalt	. 46	zäher als Eisen
Magnesium	3.6	nicht fest
Selen	2 · 1	wenig fest
Indium	3.7	weicher als Blei
Gallium	3.9	zähe, mit dem Messer schneidbar
Kalium	0.04	weich
Natrium	0.63	weich

Für die übrigen Elemente, deren Festigkeitsverhältnisse höchstens ganz allgemein bekannt sind, wird $K_3 \equiv$

Beryll 106 Mangan 63	Quecksilber
Chrom 34	Schwefel
Rhodium 28	Thallium
Iridium 67	Phosphor
Ruthenium 44	Cer
Osmium 48	Jod0.98
Titan 26	Chlor
Wolfram 26	Brom0.62
Molybdän	Barium
Lithium	Rubidium
Uran	Cäsium0.08
Arsen	

Einen Widerspruch mit der Erfahrung zeigt keiner der Werthe, wenn sie auch nicht immer den beobachteten oder wahrscheinlichen Werthen genau entsprechen. Wären von allen den angeführten Körpern Resultate von Festigkeitsversuchen bekannt, dann dürfte die Annäherung an die wahren Werthe sich noch verbessern lassen.

Der Ausdruck

$$K_3 = \frac{2 \cdot \Delta \cdot \overline{Ts}^{\frac{2}{3}}}{\left(\frac{A}{\Delta}\right)^{\frac{4}{3}}}$$

¹ Bei den letzten acht Metallen lassen sich in Ermangelung von Versuchswerthen nur die nebenstehenden allgemeinen Angaben machen. Nach Le Chatellier trägt Nickel bis zu 55 kg pro Quadratmillimeter.

oder auch

$$K_3 = \frac{2 \cdot \Delta \left(\frac{\Delta}{A} \cdot Ts\right)^{\frac{2}{3}}}{\left(\frac{A}{\Delta}\right)^{\frac{2}{3}}}$$

deutet auf ein bestimmtes Princip der Constitution der Körper hin. Klarer tritt dieses im Folgenden hervor.

Nimmt man alle Körper als aus kleinen, sich gegenseitig anziehenden Massentheilchen bestehend an und setzt voraus, dass sich Atome und Moleküle nach ähnlichen Gesetzen anziehen, wie solche für die Weltkörper erkannt wurden, also entsprechend der Formel $A=f.\frac{M.m}{R^2},^1$ oder, wenn die Acceleration einer Masse m gegen festliegende Massen oder Massencentren M zu bestimmen wäre, $A=f\Big(\frac{M+m}{R^2}\Big)$, oder unter Vernachlässigung von m gegenüber M (der gesammten anziehenden Masse)

$$A = f \cdot \frac{M}{R^2};$$

wird die Anziehung der absoluten Festigkeit (K = Belastung auf Zug in Kilogrammen pro Quadratmillimeter) proportional angenommen und, nach vorgenommenen Versuchen zur Ergründung der Beziehungen zwischen den anziehenden Massen und den Entfernungen derselben untereinander — denkbar wäre für verschiedene Stoffe Gleichheit der Massen bei verschiedenen Abständen, Gleichheit der Abstände bei Verschiedenheit der Massen oder, was am wahrscheinlichsten, Ungleichheit von Massen und Entfernungen — die Masse jeweilig proportional der Dichtigkeit der betreffenden Körper genommen, dann würden

 $^{^1}$ Es bedeuten A Anziehung, M anziehende, m angezogene Masse, R Abstand der sich gegenseits anziehenden Massen und f einen Attractionscoefficienten, der gleichzeitig die Massstäbe der verschiedenen Werthe vermittelt.

sich die Entfernungen der einzelnen anziehenden Theilchen berechnen, wenn Δ die Dichtigkeit bezeichnet, nach

$$R = \sqrt{f \cdot \frac{\Delta}{K}}.$$

Setzt man vorläufig den Werth von f=1, dann erhält man für die Metalle

Δ.	K	R	oder 10 R
Eisen 7 ·	8 42	0.431	4 · 31
Kupfer 8.	9 33	0.516	5.16
Platin	6 32	0.801	8.01
Silber10.	5 26	0 636	6.36
Gold19	5 20	0.983	9.83
Blei11	4 2	$2 \cdot 387$	$23 \cdot 89$

Da nun die annähernd als Mittelwerthe für richtig gehaltenen Ausdehnungscoëfficienten für Belastung (ϵ) in Kilogrammen pro Quadratmillimeter (Elasticitätscoëfficienten) und durch Wärme (α) pro 1° C. und ihre Verhältnisse für die angeführten Metalle folgende Zusammenstellung ergeben, in welcher in der letzten Columne der Werth von 10 R wiederholt ist,

. ε	α	ε	10 R
Eisen0.000052	0.000012	$4 \cdot 33$	4.31
Kupfer 0 • 000088	0.000017	5 18	5.16
Platin 0 · 000059	0 000008	$7 \cdot 35$	8.01
Silber0.000138	0:000020	6.90	6.36
Gold0.000150	0:000015	10.00	9.83
Blei0 000560	0.000027	$20 \cdot 74$	23.87

so zeigt sich eine einfache Beziehung zwischen den in Fragen stehenden Werthen; es zeigt sich die absolute Festigkeit abhängig von der Dichtigkeit und dem Verhältniss der Ausdehnung der Körper durch Belastung und Wärme. Der Werth von R (Abstand der mittleren Anziehungs-

centren) für ein Metall ist gleich dem $\frac{1}{10}$ fachen Werthe des Verhältnisses $\frac{\epsilon}{\alpha}$, wenn

 $[\]frac{\epsilon}{\alpha} = \frac{\text{Ausdehnung pro 1}\,\textit{kg} \; \text{Belastung und Quadratmillimeter}}{\text{Ausdehnung pro 1}^{\circ} \; \text{C. Wärme zwischen 0 und 100}^{\circ}}.$

Geringe Änderungen der benützten Werthe von ϵ und α würden genügen, um die Übereinstimmung mit den berechneten Werthen von R, welche selbst wieder von der genauen Bestimmung von K und Δ abhängig sind, herbeizuführen.

Innerhalb der Grenzen der in folgender Tabelle enthaltenen Werthe berechnen sich die Werthe von $\frac{\varepsilon}{\alpha}$ und 10 $R=\sqrt{\frac{\Delta}{K}}$, wenn für K mittlere Werthe gesetzt werden, für

· <u> </u>	10 <i>R</i>	<u>ε</u> α	10 <i>R</i>
Eisen 3·33—4·70	4.31	Aluminium 5.82-6.62	5.70
Kupfer 4.37-5.66	5.16	Zink 3.33-5.02	7.70
Platin 6.67-8.59	8.01	Zinn10.51-13.92	14.50
Silber 6.54-7.37	6.36	Kadmium 5.83-12.83	14.80
Gold 7.94—12.79	9.83	Wismuth , 22 • 52 — 33 • 42	31.30
Blei 17 • 95 — 20 • 74	23.87	Antimon18.05-29.45	30.90
Palladium 7:20-11:23	6.70		
0.11			
Stahl 2.40-5.50	3.10	Messing 4.70-8.60	6.20
Gusseisen 7 · 10 - 9 · 40	6.00	Bronze 7.70-8.00	5.80

und selbst bei

Die grössten Abweichungen finden sich bei jenen Metallen, für welche die Festigkeit am wenigsten genau bekannt ist, wie sich später zeigt.

Die allgemeine Giltigkeit der hier ausgedrückten Beziehungen geht aus folgender Tabelle schon hinreichend hervor, ganz abgesehen davon, dass sie weiter bestätigt wird.

Die zur Berechnung dienliche Formel erhält die einfache Form

$$K_4 = 100 \,\Delta \left(\frac{\alpha}{\epsilon}\right)^2 \qquad \qquad \dots (IV)$$

Die Zahl 100 umfasst den an die Stelle des Attractionscoëfficienten tretenden Cohäsionscoëfficienten, vertritt den Einfluss der gegenseitigen Anziehungsweise der einzelnen Anziehungscentren und schliesst die Maassstabsverhältnisse für die verschiedenen Werthe der Formel ein. K_4 entspricht, wie schon früher K_1 , K_2 u. s. w. dem Werthe der absoluten Festigkeit des Materials in Kilogrammen pro 1 mm^2 Querschnitt.

In der Tabelle sind den technisch wichtigsten Metallen aus den Elementen noch einige Verbindungen und Legirungen beigefügt, für welche die nothwendigen Beobachtungen vorliegen und erhaltbar waren. In den Columnen für K (beobachteten Festigkeitswerthen), ϵ , α und K_4 sind die Grenzwerthe der Beobachtung und der Rechnung angeführt, wodurch eine bequemere Einsicht in die Richtigkeit der Formel möglich wird als bei, wenn auch noch so unparteiisch, ausgewählten Mittelwerthen.

Wesentliche Ausnahmen bilden nur Aluminium und Zink. Bei Aluminium genügen geringe Änderungen der einzelnen Werthe, welche sämmtlich genauerer Bestimmungen bedürfen. Nach Wagner, »Chem. Technol.«, I, S. 124, ist Aluminium im Grösseren noch nicht rein dargestellt. Im vorigen Jahrzehnt sah man die Herstellung des von Silicium und Eisen freien Aluminium für ein Problem an. Die Versuche bezogen sich alle auf chemische Verbindungen oder Legirungen; daher die hohen Festigkeitswerthe (11-13kg und mehr). Seitdem die Aluminiumfabrik in Neuhausen a. Rh. (seit 1890) nahezu reines Aluminium herstellt, ist dessen Festigkeit auf 8 kg gesunken und wird höchst wahrscheinlich bei ganz reinem Metalle noch etwas sinken, sich somit noch mehr dem theoretischen Werthe nähern. Ähnlich verhält es sich mit dem Zink, dem überhaupt in seinem ganzen Verhalten merkwürdigen Metalle, das bald von krystallinischer, bald von unregelmässiger Bruchform sein soll, dessen Geschmeidigkeit über 150° abnimmt, bei 200° sehr spröde wird. Wertheim gelang es nicht, trotz verschiedener Versuche mehrerer Metallarbeiter, reines Zink so homogen herzustellen, dass es sich ziehen liess, wesshalb ein Theil seiner Versuche mit unreinem käuflichem Zink angestellt werden mussten. Den grösseren von ihm für & veröffentlichten Werth erhielt Wertheim aus den Querschnittsschwingungen des

Material	Dichte	Dichte Festigkeit K Δ beobachtet	ω ,		8		K_{\downarrow} berechnet	Bemerkungen
Eisen,	8.2	25—60	0.0000480 0.0000434 }	Wertheim Weisbach	(0.0000116 0 0000121 0 0000144	Borda Fizeau Troughton	35.9—70.2	K = 60 - 65 bei Eisen mit
Kupfer	6.8	20—361	0·00008032) 9510(Wertheim	\ 0.0000168 \ 170 \ 184	Fizeau Smeaton Stampfer	27.7.—46.7	or4º/o konien- stoff, wofür der kleinere
Platin	21.5	24—361	0 0000587 }	Wertheim	{ 0 0000075 88	Fromant Dulong	29.0-47 9	Wertheim's
Palladium	12.1	22	0.0000850 1022	. Wertheim	0.0000091	Fizeau	9.6-23.0	für e gilt.
Silber	10.5	16—30	0.0001360 }	Wertheim	0 0000191	Laplace Troughton	19.6—24.6	
Gold	19.3	1030	0.0001320 }	Wertheim	0.0000140	Ellicot Laplace	11.6—30.7	
Aluminium	2.6	8—13	0.0001850 }	Weisbach	0 0000222	Winnerl Karmarsch	5.6-6.4	
Zink	7.2	5—16	0.0001037	Wertheim Weisbach	0.0000294	Smeaton	28.8—52.6	
Zinn	2.3	1.7—4.3	0.0002397	Wertheim	0.0000191	Laplace Smeaton	3.8—6.6	
Kadmium	9.8	2.3-4.8	0.0001844 2488	Wertheim	0.0000313	Kopp Wertheim	1.9—3.4 [12.9—22.7]?	
Blei	11.3	1.3-2.4	0.0005546	Wertheim	0.0000280	Daniel Stapfer	2.7-3.5	

0.87-1.93	0.77-2.06	25.3 -98.6	9.06-9.69	7.6-14.5	11.4—37.9	13.2—15.7	27.5	0.781.03	0.0034—
} Fizeau	Smeaton Fizeau	Ellicot Troughton	Smeaton Laplace Berthoud	Fizeau Adie	Ellioot Daniell	Fizeau Daniell		Dulong Regnault	Pohrt Plücker
0.0000121	$\left\{ \begin{array}{c} 0.0000108 \\ 115 \end{array} \right.$	\ 0.0000107 \ 119	$\left\{ \begin{array}{c} 0 \ 0000123 \\ 137 \\ 138 \end{array} \right.$	$\begin{cases} 0.0000106 \\ 112 \end{cases}$	$\left\{ \begin{array}{c} 0.0000182 \\ 214 \end{array} \right.$	$\left\{ \begin{array}{c} 0.0000178 \\ 185 \end{array} \right.$	0.0000180	\ 0.0000081 \ 94	0.0000513
Wertheim	Wertheim	0.0000333 Redtenbach. 591 Wertheim	Hütte	0787 Wertheim 1000 Allgem.	1015) Weisbach	Redtenbach.	Dingl. Journ.	Wertheim	. Fabian
0.0003040 (0 0002076 3181	0.0000333	0 · 0000400	0 0000787 \ Wertheim 1000 \ Allgem.	0.00001015	0.0001427	0.0001014	0.0001451	0.00540
26.0	0.65-0.7	40100		10—25	12—40	16—26	40	0.3-2.0	$\begin{array}{c c} 0.91 & 0.05 - 0.08 & \begin{cases} 0.00540 \\ 0.00844 \end{cases}$
8.6	2.9	2.2	Victoria	7.2	8.4	8.8	1	2.2	0.91
Wismuth	Antimon	Stahl (weich)	Stahl (hart)	Gusseisen	Messing	Bronze	Phosphorbronze	Glas	Eis
									51*

¹ Je nach der Bearbeitung weit höher.

reinen Metalles.¹ Was für die Festigkeit gilt, ist in gleicher Weise von Einfluss bei der Bestimmung der übrigen Constanten der physikalischen Eigenschaften des Zinkes. Durchweg zeigt Zink Ausnahmestellung.

Eine weitere Ausnahme bildet das Eis, wofür sehr wenige Versuche vorliegen und wofür möglicherweise die Constante eine andere sein kann als für andere Körper, deren Schmelzpunkt weiter von derjenigen Temperatur entfernt liegt, bei welcher die Versuche gemacht wurden. Da die meisten Versuche bei 10—15° C. erhalten wurden, so würden wahrscheinlicherweise von den Temperaturen abhängige Coëfficienten eingeführt oder die Constanten darnach geändert werden müssen. Ausserdem ist es sehr wahrscheinlich, dass metallische und nicht metallische Körper, namentlich zusammengesetzte, nicht ganz übereinstimmende Constanten erfordern. Leider lassen die auffindbaren Versuche die Untersuchung im Stiche. Solche zu ergänzen, ist der Verfasser nicht in der Lage.

Im Übrigen stimmen die berechneten Werthe durchweg innerhalb den Grenzen der Beobachtungen. Geringe Änderungen der Werthe von $\mathfrak{s}, \, \alpha$ oder Δ oder selbst der Constanten würden genügen, die für K_4 berechneten Werthe den durch Versuche gefundenen noch besser anzuschliessen.

Zu den vorliegenden, wie zu allen ähnlichen Untersuchungen sollten die verschiedenen in Betracht kommenden Eigenschaften an den gleichen Versuchsstücken ausgeführt werden und nicht je an ganz verschiedenen, da die Einflüsse

Vergleicht man die von Wertheim gefundenen Werthe für die Fortpflanzungsgeschwindigkeit des Schalles in gezogenen Metallen, so tritt Zink in die gleiche Reihenfolge, wie nach obiger Formel, während die übrigen Metalle nur unbedeutend ihre Stellungen ändern.

	Fortpflanzungs- geschwindigkeiten		Fortpflanzungs- geschwindigkeiten
Metalle	des Schalles	Metalle	des Schalles
Eisen	15.1	Silber	8.1
Kupfer	$11\cdot 2$	Kadmium	7.9
$Zink\dots\dots$	11.0	Zinn	7.9
Messing	10.7	Gold	6.4
Platin	8.2	Blei	4.3

der Unreinheit, der Bearbeitung, der Dimensionen u. u. s. sich sonst viel zu viel, oft in ganz entgegengesetztem Sinne geltend machen. Selbst eine grosse Anzahl von Versuchen an verschiedenen Stücken vermag solche Mängel nicht auszugleichen.

Nach obiger Formel $K_{4}\equiv 100\,\Delta\left(\frac{\alpha}{\epsilon}\right)^{2}$ sollte, da bei den gleichen Metallen die Werthe von der Dichtigkeit und für die Ausdehnung durch Wärme wenig schwanken, der Werth von $K.\epsilon^{2}\equiv$ Constante (nahe) sein. In der That zeigte der Verfasser 1887 (Schweiz. Bauzeit., April, Bd. 9), dass sich aus vielen eingehenden Versuchen über die Festigkeit von Flusseisen (respective Flussstahl) folgende Resultate ergaben:

Belastung in Tonnen pro Quadratcenti-						
meter 3 · 5 — 4	4-4.5	4.5-5	5-5.5	5.5-6	6-6.5	6.5-7
Anzahl der Versuche 9	45	37	45	41	20	11
Mittlere Dehnung pro	04.5	09.0	90.0	00.0	10.4	10.10/
20 cm Länge 26.8 Ausgleichung 26.5	$24.5 \\ 25.0$	23·8 23·5	$22 \cdot 0$ $22 \cdot 0$	20·6 20·5	19·4 19·0	$19 \cdot 1^{0}/_{0}$ $17 \cdot 5^{0}/_{0}$
Belastung in Tonnen pro Quadratcentimeter7—7:5	7.5—8	88.5	8.5—9	99.5	9.5-10	
Anzahl der Versuche 13	3	3	0	1	3	
Mittlere Dehnung pro 20 cm Länge 17.0	13.6	18.3		10.5	Q • 40/	
Ausgleichung 16:0	14.6	13.0	 11·5	10.0	$8 \cdot 4^{0}/_{0}$ $8 \cdot 5^{0}/_{0}$	

Ähnlich, wenn auch nicht so regelmässig, verhält sich das Verhältniss der Dehnung zur Tragfähigkeit.

Bezeichnet $\mathfrak A$ die Ausdehnung bis zum Bruche pro 20 cm Länge, mit K die Belastung der Querschnittseinheit (hier Quadratcentimeter) in Tonnen, dann lässt sich setzen

$$\mathfrak{A} = 37.75 - 3 K$$

und

$$(K \pm x)\mathfrak{A} = \text{Const. oder } (K \pm x)\mathfrak{A}^2 = \text{Const.}$$

Diese Formel entspricht der angegebenen Form $K \, \mathfrak{s}^2 \equiv$ \equiv Const., wobei nicht ausseracht zu lassen, dass die Maassstäbe (Kilogramm, Tonnen, Quadratmillimeter und Quadratcentimeter) verschieden sind und einmal nur Einheitsdehnungen ohne Bruch, das anderemal beim Bruche in Betracht kommen.

Für den Fall des Entsprechens der Formel
$$K_{\rm 4}=100~\Delta\left(\frac{\alpha}{\rm e}\right)^{\rm 2}$$

der Wirklichkeit muss sie auch bei höheren Temperaturen genügen. Da Δ , α und ϵ in der erforderlichen Weise sich ändern, so genügt in der That die Formel auch für diesen Fall, wie die Anwendung auf Kupfer zeigt. Nach Dulong ist

somit auch im letzten Falle bei 100° Temperaturunterschied um 0.001852 ausgedehnt, also nahe constant, während nach Wüllner

$$\frac{1}{\varepsilon}$$
 bei 20° 10.519 kg $\frac{1}{\varepsilon}$ » 200° 7862

bei Kupfer beträgt. Da sich Δ und α bei diesen Temperaturen wenig, ϵ stärker ändert, so wird, da $\frac{10519}{7862} = 1.3$,

$$K_4' = K_4 \left(\frac{1}{1 \cdot 3}\right)^2 = 0.6 K_4.$$

Parker beobachtete die Festigkeit bei Kupferröhren

während nach der letzten vereinfachten Formel die Festigkeit betragen sollte

Mit den von Fizeau für die Ausdehnung des Kupfers gegebenen Werthen geht die Formel über (wenn die Dichtigkeitsänderung vernachlässigt wird) in $K_4'' = K_4 \left(\frac{1\cdot 13}{1\cdot 34}\right)^2 = 0\cdot 711~K_4$ und obige Werthe in 16·00, 22·37 und 26·88 oder nach der Correctur der Dichtigkeit in die Werthe 14·2, 19·9 und 23·7.

Nach Versuchen des Franklin-Institutes nimmt die Festigkeit des Kupfers bei 180° C. um $15^0/_0$, bei 240° um $20^0/_0$ der ursprünglichen Festigkeit ab. Ändert sich α um $1\cdot 2$, ϵ um $1\cdot 34$, dann müsste $K_4'''=\left(\frac{1\cdot 2}{1\cdot 33}\right)^2K_4=0\cdot 8$ K_4 werden oder die Festigkeit sich um $20^0/_0$ vermindern. Für das erste Beispiel würde nach diesen Verhältnissen die Festigkeit der aus Kupfer gewalzten Röhren bei 200° nahe $18\,kg$ gegenüber den beobachteten $16\cdot 8\,kg$ sein.

Für andere Metalle liegen leider keine genügenden Versuchsresultate vor. Die für Stahl und Eisen vorliegenden Versuche widersprechen nicht.

Da bei Flüssigkeiten der Elasticitätsmodul sehr klein, der Werth von z somit sehr gross wird, so muss nach unserer Formel (IV) auch die Festigkeit nahe gleich Null sein.

Sind die im Vorhergehenden benutzten Beziehungen nur annähernd richtig, dann müssen sich die gefundenen Werthe für die Entfernung der Atom- (respective Molekül-) Mittelpunkte auch wieder annähernd durch die angenommenen Werthe der Atomdurchmesser $\left(\sqrt[3]{\frac{A}{\Delta}}\right)$ darstellen lassen, wenn die Annahme berechtigt ist, dass bei festen und flüssigen Körpern die Distanzen wesentlich von den Dimensionen der kleinsten sie bildenden Theilchen abhängig sind, dass diese somit nicht durch grosse Zwischenräume voneinander getrennt werden. Vollständig wird die Übereinstimmung nicht sein können, da die Entfernung der

Anziehungsmittelpunkte nicht einzig von dem Atomvolumen abhängig zu sein braucht und da nicht nur zwei Kerne aufeinanderwirken, sondern das ganze Massensystem sich gemeinschaftlich und gegenseitig anzieht und aufeinander wirkt.

In folgender Tabelle sind zunächst für die hinsichtlich der Festigkeit genauer untersuchten Metalle die entsprechenden Werthe für $\sqrt[3]{\frac{A}{\Delta}}$ (die Entfernung der Centren der Atome und Moleküle proportional denselben angenommen), für $\sqrt{\frac{\Delta}{K}}$ (dem aus der Festigkeit sich ergebenden Abstande (R) der Atomund Molekülmittelpunkte) zusammengestellt und in der letzten Columne mit Hilfe der Gleichung y=ax+b, wenn für $y=\sqrt[3]{\frac{A}{\Delta}}$ und für $x=\sqrt{\frac{\Delta}{K}}$, für a=0.3 und für b=1.8 gesetzt wird.

$\sqrt[3]{rac{A}{\Delta}}$	$\sqrt{rac{\Delta}{K}}$		Berechnete V $y = 0.3x + 1$	
Metalle	Extreme	Mittel	Extreme	Mittel
Eisen1.92	0.52-0.34	0.44	1.96-1.90	1.93
Kupfer 1 • 93	0.74 - 0.41	0.66	$2 \cdot 02 - 1 \cdot 92$	1.99
Silber2.17	0.81 - 0.45	0.69	2.04-1.94	2.01
Gold2.16	1:39-0:80	0.98	2.24-2.04	2.09
Platin2.01	0.95 - 0.72	0.84	2.09-2.02	2.05
Palladium2.07	0.67	0.67	$2 \cdot 02$	2.00
Aluminium2·18	0.49 - 0.42	0.46	1.95-1.93	1.94
Kadmium2.29	1.93-1.33	1.57	2.37-2.19	$2 \cdot 27$
Blei 2 · 63	$2 \cdot 95 - 2 \cdot 17$	2.51	2.68 2.45	$2 \cdot 55$
Antimon2.63	3.35-3.10	$3 \cdot 22$	2.81-2.75	2.77
Wismuth2.77	3.19	3.19	$2 \cdot 75$	2.75
Zink2.09	1.20-0.66	1.09	2.16-2.00	2.08
Zinn 2 • 53	2.07-1.30	1.44	2 · 42 - 2 · 19	2.23
Messing 1 · 97	0.84-0.46	0.60	2.05-1.94	1.98

Berechnet man die Abweichung der Mittel der ersten und der letzten Columnen, dann erhält man $2 \cdot 24 - 2 \cdot 22 = 0 \cdot 02$.

Es ergeben sich somit für beide Werthe ähnliche Reihen und nur wenig voneinander abweichende Mittel; es scheint somit die Annahme gerechtfertigt, dass zwischen beiden Werthen innerhalb gewisser, durch die Natur, wie durch die Beobachtungswerthe beeinflussten Grenzen Parallelität des Ganges besteht.¹

Umgekehrt müssen sich nun aus den gegebenen Beziehungen die einzelnen Werthe berechnen lassen, wenn die nothwendigen Constanten bestimmt sind. In der That gibt die Formel

$$K_5 = 0.09 \,\Delta : \left[\left(\frac{A}{\Delta} \right)^{\frac{1}{3}} - 1.8 \right]^2 \qquad \dots (V)$$

mit der Erfahrung nahe übereinstimmenden Werthe; so für

u. s. w.

Somit entsprechen die aus den Festigkeitsverhältnissen abgeleiteten Werthe der Entfernungen der Atom- (respective Molekül-) Kernmitten den aus dem Atomvolumen abgeleiteten Werthen. Es lassen sich schon jetzt die einen, wenn auch nur annäherungsweise, auf den anderen Werth beziehen, und es lassen sich die einzelnen unbekannten Werthe, wenn die übrigen gegeben sind, mit Hilfe einfacher Gleichungen innerhalb der Grenzen der Beobachtungsfehler berechnen.

Da nach Obigem
$$\left(\frac{A}{\Delta}\right)^{\frac{1}{3}} = 0.3 \left(\frac{\Delta}{K}\right)^{\frac{1}{2}} + 1.8$$
 und (nach IV) $10\sqrt{\frac{\Delta}{K}} = \frac{\varepsilon}{\alpha}$, so wird $0.03\frac{\varepsilon}{\alpha} + 1.8 = \left(\frac{A}{\Delta}\right)^{\frac{1}{3}}$ werden.

¹ Bemerkt sei, dass zwischen den Werthen von $\frac{A}{\Delta}$ und $\frac{\varepsilon}{\alpha}$ noch die einfache Beziehung $\frac{A}{\Delta}=3.5\sqrt{\frac{\varepsilon}{\alpha}}$ (nahe) besteht. Es ist beispielsweise bei

Für organische Körper, und zwar für Holzarten, erhält man, wenn die bisherigen Bezeichnungen beibehalten werden

Δ	K	1 8	α	$\Delta\left(\frac{\alpha}{\epsilon}\right)^{i/2}$
Pappel0.477	1.97 (3.6)	517.2	0.0000746	0.00071
Fichte0.599	2.48 (4.8)	$564 \cdot 2$	608	0.00086
Buche0.823	3.57	$980.4 \begin{cases} \text{weiss} \\ \text{roth} \end{cases}$	604)	0.00333
	,	(roth	716)	0.00303
Ahorn0.674	3.28 (6.6)	1121.4	512	0.00176
Tanne0.493	4.18	1113.2		
Birke0.812	4.30	997.2		
Erle0.601	4.54	1108.1	699	0.00361
Eiche0.808	6.49 (7.1)	921 · 3	746	0.00382
Esche0.697	6.78 (6.6)	1121 4	951	0.00787
Espe0.603	7.20			
Akazia0.717	7.93	1261.9		
Ulme (Rüster) 0 580		1165 5	635	0.00499

Auch hier wachsen im Allgemeinen die Werthe der letzten Columnen wie diejenigen der Werthe von K, der Festigkeitswerthe. Bei der beschränkten Anzahl der vorliegenden Versuche und dem starken Wechsel der verschiedenen Werthe der Resultate, der sogar bei der Dichtigkeit (Δ) noch erheblich ist, darf man weder eine genauere Übereinstimmung erwarten, noch würde es zweckentsprechend sein, durch genauere Bestimmung einzelner Constanten eine grössere Übereinstimmung erreichen zu wollen.

Bast trägt nach Fr. Haberlandt im Mittel $34\cdot6$ (ausnahmsweise 50) kg pro $1\ mm^2$, wobei er sich nur um $1\cdot27^0/_0$ dehnt. Es würde somit $\epsilon=0\cdot00035$. Bei $\Delta=0\cdot9$ und $\alpha=0\cdot000065$ (mittlere Dehnung durch Wärme bei Holz) würde sich die Festigkeit zu $45\ kg$ pro $1\ mm^2$ berechnen, wenn man aus vorstehender Tabelle eine Zahl von 1500 bestimmt, mit welcher die Werthe der letzten Columnen vorstehender Tabelle vervielfacht werden müssten, um sie den Festigkeitswerthen der Hölzer zu nähern.

Nach der Formel (IV) $K_{\rm A}=100\,\Delta\left(\frac{\alpha}{
m s}\right)^{\rm 2}$ und nach der Formel (III)

$$K_3 = 2 \cdot \frac{\Delta \cdot \overline{Ts}^{\frac{2}{3}}}{\left(\frac{A}{\Delta}\right)^{\frac{4}{3}}}$$

wird

$$\frac{\varepsilon}{\alpha} = 7 \sqrt[3]{\left(\frac{A}{\Delta}\right)^2 \cdot \frac{1}{Ts}}$$

Nun ist aber auch

$$\frac{\varepsilon}{\alpha} = 7 \frac{\sqrt[3]{A}}{As.\Delta s}.^{1}$$

Setzt man beide Werthe einander gleich, dann wird

As
$$\Delta s$$
 $\sqrt[3]{\frac{\overline{A}}{\Delta}} = \sqrt[3]{T \cdot \Delta s}$,

oder nach Einführung einer Maassstabsconstanten

$$As.\Delta s. \sqrt[3]{\frac{\overline{A}}{\Delta}} = \sqrt[3]{\frac{\overline{T.\Delta s}}{1.28}}$$

oder

$$\overline{As^3}$$
. $\overline{\Delta s^3} = \frac{T.\Delta s}{1.28} : \frac{A}{\Delta}$.

Somit ist: das Product aus den dritten Potenzen der Atom- und relativen Wärme gleich dem Quotienten aus der Schmelztemperatur mal der relativen Wärme durch das Atomvolumen.

Setzt man in diese Formel (V) die entsprechenden Werthe ein, dann erhält man, wenn die Werthe der specifischen

¹ Nach Einsetzen der betreffenden Werthe erhält man für

Eisen 3.5	Gold10.4
Kupfer	Blei18.4
Platin 9 · 0	Zinn 12 · 7
Wismuth 21.8	

u. s. w. (vergl. Tabelle S. 16.)

Die Constante 7 sollte etwas kleiner gewählt werden; der Einfachheit halber wurde sie der vorhergenden gleichgesetzt.

² Der Grundanschauung gemäss, Alles auf bekannte Verhältnisse zu beziehen, blieben in den Formeln die Werthe As = Atomwärme, $\Delta s =$ relative

Wärme (s) berechnet werden, folgende Tabelle, in welcher die beobachteten Werthe von s beigesetzt sind.

In der folgenden Tabelle sind des Vergleiches halber die Werthe von t, s, A und Δ nebst den wichtigsten Varianten enthalten.

	Werthe der spec	eifischen Wärme (s)
Elemente	berechnet	beobachtet
Beryllium	0.5768	0.5820
Nickel		0.1056
Kobalt	0.1069	0.1067
Mangan	0 1188	0.1200
Kupfer		0.0959
Eisen		0.1115
Chrom	0.1229	0.1100
Rhodium	0.0643	0.0580
Iridium	0.0348	0.0350
Ruthenium	0.0639	0.0611
Osmium	0.0355	0.0312
Palladium	0.0618	0.0590
Platin	0.0329	0.0325
Zink	0.0851	0.0909
Titan	0.1301	0.1300
Wolfram	0.0369	0.0360
Gold	0.0328	0.0320
Silber	0.0582	0.0570
Aluminium	0.2287	0.2185
Molybdän	0.0720	0.0720
Lithium	0.7972	0.9408
Uran	0.0295	0.0277
Kadmium	0.0537	0.0550
Arsen (verflüchtigend) .	0.0733	0.0750

Wärme, $\frac{A}{\Delta}$ = Atomvolumen u. s. w. stehen. Für die Einführung numerischer Werthe setzt man

$$s = 0.95 \sqrt[5]{\frac{T}{A^4 \cdot \Delta}}; \quad T = \overline{A}s^4 \Delta s$$

$$As = \sqrt[4]{\frac{T}{\Delta s}}; \quad \Delta s = \frac{T}{As^4}; \quad \Delta = \frac{T}{A^4 s^5}$$

$$A = \sqrt[4]{\frac{T}{\Delta \cdot s^5}} = \frac{1}{s} \sqrt[4]{\frac{T}{\Delta s}}.$$

	Werthe der speci	fischen Wärme (s)
Elemente	berechnet	beobachtet
Gallium	0.0701	0.0790
Magnesium	0.2531	0.2499
Quecksilber	0.0260	0.0333
Indium		0.0569
Schwefel	0-1736	0.1764
Zinn	0.0494	0.0548
Thallium	0.0294	0.0336
Phosphor	0 · 1756	0.1750
Antimon	0.0502	0.0492
Selen	0.0750	0.0800
Blei	0.0296	0.0310
Tellur	0 0511	0.0495
Thorium	0.0234	0.0276
Wismuth	0.0296	0.0305
Cerium	0.0463	0.0448
Didym		0.0456
Lanthan		0 0449
Natrium	0.2540	0.2934
Jod	0.0473	0.0541
Chlor	0.1473	0.1800
Brom	0.0705	0.0850
Strontium	0.0885	0.0740
Baryum		0.0470
Kalium		0.1655
Rubidium	0.0752	0.0770
Cäsium	0.0525	0.0480
Germanium		0.0750 (berechnet
Zirkon		0.0680
Calcium	-	0.1704

Tabelle der benützten Werthe und deren Varianten.

Elemente	t^1 in Graden C.	A	Δ	S
Be	900 $\begin{cases} 900 \\ \text{weniger} \end{cases}$	9 • 1	$2.0 \begin{cases} 1.64 \\ 2.10 \end{cases}$	0.4246-0.5820
Ni	$1500 \begin{cases} 1400 \\ 1600 \end{cases}$	$58.2 \begin{cases} 57.9 \\ 58.7 \end{cases}$	$8.8 \begin{cases} 9.1 \\ 8.6 \end{cases}$	0.1035-0.1092
co	$1600 \begin{cases} 1500 \\ 1800 \end{cases}$	58.5	$8.8 $ $\begin{cases} 8.4 \\ 9.2 \end{cases}$	0.1067

 $T = t + 273^{\circ}$.

Elemente t in Graden		Δ	S
$Mn \dots 1700 \begin{cases} 1600 \\ 1900 \end{cases}$	$54\ 5\begin{cases} 53 \cdot 9 \\ 55 \cdot 0 \end{cases}$	$8.0 \begin{cases} 8.0 \\ 8.1 \end{cases}$	0.1217-0.1250
Cu $1060 \begin{cases} 1050 \\ 1150 \end{cases}$	63.2	$8.8 \begin{cases} 8.8 \\ 8.95 \end{cases}$	0.0920-0.0951
Fe $1500 \begin{cases} 1500 \\ 1600 \end{cases}$	55.9	$7.8 \begin{cases} 7.79 \\ 8.01 \end{cases}$	0.1081-0.1138
Cr $1500 \begin{cases} 1500 \\ 2000 \end{cases}$	$52 \cdot 3$	$6.8 \left\{ \begin{matrix} 6.2 \\ 6.9 \end{matrix} \right.$	0 1000-0.1200
Rh $1800 \begin{cases} 1750 \\ 2000 \end{cases}$	104.1	$12 \cdot 3 \begin{cases} 11 \cdot 3 \\ 12 \cdot 9 \end{cases}$	0.0580
$Jr \dots 1950 \begin{cases} 1900 \\ 2200 \end{cases}$	192.6	$22.5 {21.5 \atop 22.4}$	0.0323-0.0364
Ru 1800	104.0	$12.8 \begin{cases} 11.5 \\ 12.9 \end{cases}$	0.0611
Os $2300 \begin{cases} 2300 \\ 2500 \end{cases}$	$198.5 \begin{cases} 195 \\ 198.5 \end{cases}$	$12 \cdot 8 \begin{cases} 11 \cdot 5 \\ 12 \cdot 9 \end{cases}$ $22 \cdot 5 \begin{cases} 22 \cdot 45 \\ 23 \cdot 0 \end{cases}$	0.0306-0.0313
Pd $1500 \begin{cases} 1370 \\ 1500 \end{cases}$	106.0	$12.0 \begin{cases} 11.4 \\ 12.0 \end{cases}$	0.0582-0.0714
Pt 1700 $\begin{cases} 1480 \\ 1800 \end{cases}$	194.4	$22\cdot 1 \left\{ \begin{matrix} 21\cdot 3 \\ 22\cdot 5 \end{matrix} \right.$	0.0325-0.0339
$Zn \dots 430 \begin{cases} 400 \\ 433 \end{cases}$	$64 \cdot 9 \begin{cases} 64 \cdot 88 \\ 65 \cdot 40 \end{cases}$	$7 \cdot 0 \left\{ \begin{array}{c} 6 & 9 \\ 7 \cdot 3 \end{array} \right.$	0.0909-0.0932
Ti 1600	$50 \cdot 0 \begin{cases} 48 \cdot 1 \\ 50 \cdot 3 \end{cases}$	5.3	0.1300
W 1700	183 · 6	$19.3 \begin{cases} 18.8 \\ 19.3 \end{cases}$	0.0350-0.0364
Au $1050 \begin{cases} 1035 \\ 1097 \end{cases}$	196 · 2	$19.3 \begin{cases} 19.3 \\ 19.6 \end{cases}$	0.0316-0.0330
Ag $950 \begin{cases} 916 \\ 1040 \end{cases}$	107 · 7	$10.5 \begin{cases} 10.48 \\ 10.51 \end{cases}$	0.0560-0.0613
A1 850 $\begin{cases} 700 \\ 1000 \end{cases}$	27.0	$2.6 \begin{cases} 2.56 \\ 2.67 \end{cases}$	0.2020-0.2253
$Mo \dots 1550 \begin{cases} 1580 \\ 1600 \end{cases}$	95.8	8.6	0.0660-0.0722
Li 183	7.0	0.59	0.9408
U 1500	$239.8 \begin{cases} 238.5 \\ 240.0 \end{cases}$	18.7	0.0277
Cd $500 \begin{cases} 315 \\ 500 \end{cases}$	111.7	8 65	0.0548-0.0557
As 210	74 9	$5.73 \left\{ \begin{matrix} 5.53 \\ 5.93 \end{matrix} \right.$	0.0758-0.0830
Ga 30	$69.5 \Big\{ {68.8 \atop 70.0} \Big\}$	5.96	0.0790-0.0802

Elemente t in Graden C.	A	Δ	S
$Mg \dots 500 \begin{cases} 430 \\ 1050 \end{cases}$	$23 \cdot 95 \begin{cases} 23 \cdot 9 \\ 24 \cdot 4 \end{cases}$	1.74	0 · 2450 0 · 2499
Hg $-40 \begin{cases} -38.5 \\ -40.1 \end{cases}$	200·0 113·4	$13.59 \begin{cases} 13.55 \\ 13.60 \end{cases}$	0.0318-0 0333
Jn 176	113.4	$7 \cdot 25 \left\{ \begin{array}{c} 7 \cdot 2 \\ 7 \cdot 4 \end{array} \right.$	0.0569
	31 98	$2.05 \begin{cases} 1.92 \\ 2.06 \end{cases}$	0·1620 kryst. 0·1764—0·1844 geschmolzen
Sn $230 \begin{cases} 228 \\ 235 \end{cases}$	$117.5 \begin{cases} 117.3 \\ 118.1 \end{cases}$	$7 \cdot 25 \begin{cases} 7 \cdot 18 \\ 7 \cdot 30 \end{cases}$	0.0545-0.0562
T1 290 —	203.7	11.86	0.0336
P $44 \begin{cases} 44 \cdot 2 \text{ hell} \\ 255 \text{ roth} \end{cases}$	30 96	$2 \cdot 3 \begin{cases} 1 \cdot 77 \\ 2 \cdot 3 \end{cases}$	0 · 1698
Sb $440 \begin{cases} 425 \\ 450 \end{cases}$	11.98	6.7	0.0486-0.0507
Se $217 \begin{cases} 150 \\ 850 \end{cases}$	78.85	$4 \cdot 5 \begin{cases} 4 \cdot 2 \\ 4 \cdot 8 \end{cases}$	0.0762-0.0840
Pb $330 \begin{cases} 322 \\ 335 \end{cases}$	206.4	11.4	0.0306-0.0314
Te 455	$127 \cdot 8 \begin{cases} 125 \\ 127 \cdot 9 \end{cases}$ $232 \cdot 0 \begin{cases} 231 \cdot 9 \\ 233 \cdot 4 \end{cases}$	6 2	0.0474-0 0516
Th 1000 (?)	$232 \cdot 0 \begin{cases} 231 \cdot 9 \\ 233 \cdot 4 \end{cases}$	$11.1 \begin{cases} 10.6 \\ 11.1 \end{cases}$	0.0276
Bi 275 $\begin{cases} 246 \\ 275 \end{cases}$	207.5	$9.82 \begin{cases} 9.7 \\ 8.9 \end{cases}$	0.0297-0.0303
Ce 450 $\begin{cases} 437 \\ \dots \end{cases}$	$140.8 \begin{cases} 140.4 \\ 141.5 \end{cases}$	$6.5 \begin{cases} 6.2 \\ 6.7 \end{cases}$	0.0448
Di 500 (?)	144.8	6.5	0.0456
La 500 (?)	138.5	6•2	0.0449
Na 96 \\ \begin{pmatrix} 90 \\ 97 \\ \] J 114 \\ \{114} \end{pmatrix}	23.0	$0.97 {0.97 \atop 0.98}$	0.2934
J 114 $\begin{cases} 107 \\ 114 \end{cases}$	126.6	4.94	0.0541
C1 —75	35.4	$ \begin{array}{c} 1 \cdot 37 \begin{cases} 1 \cdot 33 \\ 1 \cdot 38 \end{cases} \\ 2 \cdot 97 \begin{cases} 2 \cdot 97 \\ 3 \cdot 12 \end{cases} $	0.1214-0.1800
Br7·3	79.8	$2 \cdot 97 \begin{cases} 2 \cdot 97 \\ 3 \cdot 12 \end{cases}$	0 0843-0.0850
Sr 550 (?)	87.3	$2 \cdot 52$	0.0740
Ba 475	136.8	$3.8 \begin{cases} 3.75 \\ 4.00 \end{cases}$	0.0470
$K \dots \qquad 60 \begin{cases} 58 \\ 62 \cdot 5 \end{cases}$	39.05	0.86	0.1655
Rb 38	85.2	1.52	0.0770

Elemente	t in Graden C.	A		$oldsymbol{\Delta}$,	S
					0.0480 (berechn.)
Ge	900 \{ \begin{pmatrix} 900 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	72.75 .	5.46		0.0750 (berechn.)
$Zr\dots.\Big\{$	sehr hoch 2000 (?)	$90.0 \ \begin{cases} 9 \\ 8 \end{cases}$	9·4 0·5 4·15		0.0770
Cah	öher als Sr	40.0 .	1.57	1.56 1.88	0.1672-0.1722

Unter den angeführten 53 Fällen finden sich stärkere Abweichungen zwischen den berechneten und beobachteten Werthen, zunächst bei Chrom, Rhodium, Aluminium, Zinn und Lanthan. Für diese erhält man, wenn die berechneten Werthe den in der zweiten Tabelle enthaltenen Grenzwerthen gegenübergestellt werden.

	Werthe von s		
berechnet	Grenzwerthe		
Chrom 0·1229	0.1000-0.1200		
Rhodium 0.0643	0.0580		
Aluminium 0.2287	0.2020 - 0.2253		
Zinn 0.0494	0 0545-0.0562		
Lanthan 0.0482	0.0449		

Geringe Änderungen der in die Formel eingesetzten Werthe, namentlich der vielfach wenig genau bestimmten Schmelztemperaturen würden grössere und genügende Annäherungen gestatten. Eine etwas stärkere Abweichung — 0.0851 gegen 0.0909 - zeigt auch hier wieder das sich vielfach eigenthümlich verhaltende Zink, wodurch sich die Frage aufwirft: Bildet dieses Metall überhaupt eine Ausnahme oder sind die Constanten an unreinem Metalle bestimmt? Die Unterschiede, welche sich bei Lithium, Natrium, Kalium und Rubidium ergeben, erklären sich einfach dadurch, dass die praktisch bestimmten Werthe der specifischen Wärme dem Schmelzpunkte nahe genommen, damit zu hoch sind. Für Cäsium ist der Werth von s aus der angenommenen Atomwärme berechnet. Für Selen scheint der berechnete Werth von s für niederere Temperatur zu stimmen. Bei Ouecksilber und Jod findet Übereinstimmung statt, wenn an die Stelle der Schmelz- die Siedetemperatur tritt, was bei diesen Elementen mit niederer

Schmelztemperatur dadurch erklärbar wird, dass bei den Elementen in der Nähe der Schmelzpunkte die specifische Wärme zunimmt. Für Strontium, Baryum, Germanium, Zirkon und Calcium sind mindestens ein Theil der Constanten zu wenig genau bestimmt, um als sichere Werthe bei der Rechnung zu dienen.

Unter den nicht in der Liste aufgenommenen Elementen stehen Kohlenstoff und Bor obenan. Beide besitzen die Eigenthümlichkeit, mit den zu Gebote stehenden Hilfsmitteln nicht schmelzbar zu sein und bei gewöhnlicher Temperatur für die specifische Wärme Werthe von geringer Grösse zu zeigen. Wie H. F. Weber u. A. zeigten, steigen letztere Werthe stark mit der Temperatur. Beispielsweise betragen die Werthe von s für

•	bei 0—100°	0-200°	600°	980° C.
Holzkohle	0.1935	0.2385	~	
Graphit (von Ceylon)	0.1990	0.2970	0.4400	0.4670
Diamant	0.1765	0.2700	0.4400	0.4590
Bor, krystallisirt	0.2737	0.3663	_	

Da für Kohlenstoff bei nahe 1000° C. die Atomwärme auf 5.6, bei Bor auf 4.0 bei 233° steigt, darf geschlossen. werden, dass nahe dem Schmelzpunkte auch bei diesen Elementen die Atomwärme dem für die übrigen annähernd (im Mittel) 6.4 nahe komme. Gestützt auf diese Annahme berechnet sich für Kohlenstoff die Schmelztemperatur zu 3500, für Bor zu 3200° vom natürlichen Nullpunkte an gerechnet.1 Für Vanadium, Niobium und Tantal fehlen die Bestimmungen der Werthe von t und s. Für Silicium berechnet sich s = 0.2508, wenn $T = 2000^{\circ}$, für Germanium s = 0.0945, wenn $T=1170^{\circ}$ gesetzt wird. Beide Werthe sind zu gross. Sie würden kleinere Werthe von T erfordern, während bei Calcium bei einer Annahme von $T=2000^{\circ}$, s=0.1301 oder bedeutend zu nieder gegenüber dem für s sonst angenommenen Werthe sich berechnet. Für Zirkon wird bei der Annahme $T=2000^{\circ}$, s=0.0886, somit zu hoch. Bei Thorium würde ein etwas

¹ Die Eigenthümlichkeit der steigenden Werthe von s mit zunehmender Temperatur zeigt, dass der obigen Formel V ein diese berücksichtigendes Glied enthalten sollte.

höherer Werth für T als 1200° , dem von Nilson bestimmten Werthe s=0.0276 entsprechen. Da leider für die zuletzt angeführten Elemente ein Theil der physikalischen Constanten, namentlich hinsichtlich der Schmelztemperatur, mangelhaft sind oder ganz fehlen, so können auch die damit berechneten Werthe nicht zu einer Kritik der Formel benützt werden. Immerhin stehen die gefundenen, wenn auch von den zu erwartenden abweichenden Werthe nicht im Widerspruche; sie sprechen nicht direct gegen die Zulässigkeit der Formel.

Nach S. Wroblewski erstarrt Stickstoff bei -203° , hat dabei die Dichte 0.9, ein Atomvolumen von 15.5, woraus sich s=0.2892 berechnet; Sauerstoff bei -200° , wobei $\Delta=1.24$, $\frac{A}{\Delta}=12.9$ ist, so dass sich s=0.2336 berechnet. Nach Delaroche und Bérard betragen diese Werthe: für Stickstoff s=0.2754 und für Sauerstoff s=0.2361.

Für folgende Legirungen ergibt sich folgende Zusammenstellung:

			S	S
Metalle t	Δ	Δ	berechnet	beobachtet
PbBi141·2°	$8 \cdot 759$	207	0.0369	0.0400
SnPb 241	9.387	162	0.0429	0.0410
Sn ₂ Bi 167 · 7	8.085	148	0.0462	0.0450
Sn ₂ Pb 196	8.777	147	0.0464	0.0451
Messing900	8.60	64	0.0963	0.0939

Für diese Fälle stimmt die Formel somit ebenfalls.

Hat die Formel V und deren Benützung eine naturgemässe Berechtigung, dann muss sie sowohl bei den Verbindungen, wie seinfachen Elementen genügen oder doch ohne wesentliche Anderungen sich denselben anpassen lassen.

mui Aus dem Gebiete der Verbindungen seien folgende Beispiele angeführt, für welche in der Berechnung an die Stelle der Atomgewichterdie mittleren Werthe der einzelnen Bestandthe Erreferendannen.

orium würde_ein etwas

Table 10 in Microsoft Bit 1630 179d = 25 63 6, Sn $_2$ Bit $\frac{117 \cdot 5 \cdot 2 + 207 \cdot 5}{3} = 147 \cdot 5$ u. s. w.

Schmelz-	Dichtig-	Specifisc	ne Wärme
temperatur	keit	S	
(t)	Δ	berechnet	beobachtet
Salpetersaures Natron311°	2.23	0.263	0.278
Kali 339	2.06	0.240	0.240
Zinnober360 (Verdampfung	g) 8:06	0.058	0.051
Bleichlorid500	5.80	0.068	0.067
Bleibromid499	6.61	0.052	0.053
Kaliumchlorid734	1.98	0.183	0.173
Natriumchlorid 772	2.15	0.221	0.214
Calciumchlorid 720	2.22	0.179	0.164
Silberchlorid453	5.55	0 090	0.091
Kaliumjodid634	2.91	0.087	0.082
Silberjodid527	5.03	0.058	0.062
Bleijodid385	6.16	0.043	0.043
Quecksilberchlorid 290	$5 \cdot 42$	0.066	$\begin{cases} 0.064 \\ 0.069 \end{cases}$
Chlorealcium285	2.04	0.228	$\{0.165 \\ 0.345$
Schwefelkohlenstoff . -110	1.28	0.210	0.235
Siede-			
temperatur			
Schwefelkohlenstoff 46.0	1 · 28	0.228	0.235
Wasser100	1.00	0.466	0.481
			(bei Dampf)

Für diese Verbindungen, für welche die nothwendigen Bestimmungen der physikalischen Constanten aufzufinden waren, gibt die Formel ebenfalls sehr befriedigende Resultate.

Zur Verwendung der Formel bei organischen Verbindungen kann in vielen Fällen der mittlere Werth der Atomwärme (mittlere Atomwärme der Moleküle) gleich 5:32 gesetzt und, wie auch schon in vorhergehenden Beispielen, die Constante 1:28 vernachlässigt werden, wodurch einfach

$$s = \frac{T}{800 \, \Delta}$$
 (anstatt $s = 0.95 \, \sqrt[5]{\frac{T}{A^4 \Delta}}$ wird.

Man erhält beispielsweise bei:

	Siede-		Specifische Wärme		
	temperatur	Dichtigkeit	berechnet	beobachtet	
Aceton	. 56°4	0.813	0.506	0.482-0.530	
Äther	. 34 9	0.728	0.530	0.548-0.529	
Äthylacetat	. 77	0.907	0.482	0.496	

	Siede-		Specifische Wärme	
	temperatur	Dichtigkeit	berechnet	beobachtet
Äthylchlorid	12°	0.921	0.389	0.427
Äthyljodid	. 72	1.976	0.212	0.172
Äthylenbromid	131.5	2 180	0.233	0.176
Alkohol	78.3	0.806	0.545	0.506-0.610
Benzol	80.4	0.900	0 490	0.436
Bernsteinsäure	. 235	1.552	0.410	0.313
Chloroform	61	1.493	0.280	0.236
Essigsäure,	118	1.070	0.458	0.459
Methylalkohol	66.2	0.796	0.532	0 590
Olivenöl	315	0.918	0.430	0.438
Terpentinöl	161	0.875	0.618	0.510-0.6131
Amylalkohol	131	0.820	0.616	0.5640.694

	Schmelz-		Specifische Wärme	
	temperatur	Dichtigkeit		S
	t	Δ	berechnet	beobachtet
Äthylenbromid	. 995	2.180	0.162	0.176
Bernsteinsäure	. 180	1.552	0.362	0.313
Mannit	. 162	1 · 488	0.365	0.324
Nitrobenzol	. 2.0	1 · 190	0.287	0.347
Rohrzucker	. 170	1.600	0.362	0.342
Weinsäure	. 135	1.764	0.270	0.288

	Schmelz- temperatur Dichtigkeit		Berechnete specifische Wärme	
	t .	Δ	nach: Formel	Bestandtheile
Kampfer	. 175°	0.985	0.580	0.497
Kautschuk	. 120	0.925	0.531	0.562
Naphthalin	. 80	1.145	0.385	0.346
Nitroglycerin	. 6	1.600	0.220	0.280
Phenol	. 35	1.065	0.364	0.376

Trotz der Vereinfachung, welche nur eine Annäherung gestatten kann, sind berechnete und beobachtete Werthe in den wenigeren Fällen bedeutend von einander abweichend. Die Abweichungen sind bald positiv, bald negativ und stimmen selbst annähernd für jene Verbindungen, für welche dem Verfasser keine beobachteten Werthe für die specifische Wärme

¹ Bei Terpentinöl gilt 0.613 für eine Temperatur von 160°.

vorliegen, sondern wofür sie erst aus den Bestandtheilen berechnet werden mussten. Selbstverständlich macht sich deutlich der Einfluss der Bestimmung der specifischen Wärme bei verschiedenen Temperaturen geltend. Bei der Bernsteinsäure ist beispielsweise der Werth derselben weit unterhalb, bei Äthylenbromid und Nitrobenzol etwas über dem Schmelzpunkte bestimmt. Bei den letzteren weichen Rechnung und Beobachtung im gleichen, bei der ersteren der drei Verbindungen im umgekehrten Sinne von einander ab. Dass es somit nicht gleich ist, ob die Schmelz- oder die Siedetemperaturen für die Werthe von t zu Grunde gelegt werden, ist selbstverständlich. Liegen dieselben nicht sehr weit auseinander, dann ist der Unterschied weniger fühlbar. Es sollte für genauere Bestimmungen auch in diesen Fällen auf die Temperaturen, bei welchen die Werthe der specifischen Wärme bestimmt wurden, in der Formel Rücksicht genommen werden. Für vorliegenden Zweck sehen wir davon ab.

Berechnet man die Werthe der specifischen Wärme unter Zugrundelegung der Siedepunkt-Temperaturen soweit dieselben für die Elemente genauer bestimmt sind, dann erhält man:

	Specifische Wärme				
Siede-	Dichtig-	berechnet	beoba	chtet	
temperatur	keit	,	flüssig	fest	
Antimon1300° (v. Meyer)	6.7	0.064		0.052	
Brom 60	2.97	0.077	0.105	0.084	
Kadmium., 860	8.60	0.062	0.064	0 056	
Jod 200	4 95	0.052		0.054	
Phosphor 290	1 83	0.202	0.205	0.190	
Quecksilber 357	13.54	0.031	0.033	0.032	
Schwefel 440	2.05	0.202	0.234	0.203	
Zink 940	7:15	0.099	_	0.096	
Selen 670	$4 \cdot 80$	0 087	-	0.076	
Magnesium 1100 { (Ver-flüchtigun	1·75 g)	0.297	• • • •	0.263	
Indium, Rothglut900—1000	\$7.15	0.063		0.088 (Ditt)	
maram, nomente	(7-15	0.064		0.057 (Bunsen)	

Diese Zusammenstellung bestätigt, dass mitunter die höheren Temperaturen geeigneter sind zur Bestimmung der specifischen Wärme, wie nach früher Gesagtem zu erwarten war. Hier stimmen die berechneten und beobachteten Werthe bei Quecksilber, Zink u. s. w., während die Schmelztemperaturen zu niedere Werthe ergaben. Bei Quecksilber ist die Ursache — die Bestimmung der specifischen Wärme über dem Schmelzpunkte — sofort klar. Bei Zink muss auf das früher Gesagte verwiesen werden.

Die aufgeführten Beispiele genügen, um darzulegen, dass sich die Formel den verschiedenartigsten Verhältnissen anpasst oder anpassen lässt. Abweichungen ergeben sich bald nach der einen, bald nach der andern Seite hin; im Ganzen aber sind dieselben in Anbetracht der bestehenden, nur durch eingehende und weitläufige Versuche zu überwindenden Ungleichförmigkeiten der Beobachtungen und Resultate derselben nicht gross; niemals ergibt sich ein direct widersprechendes Resultat. Neuere Versuche ergaben nie grössere, sondern umgekehrt stets geringere Unterschiede. Uran stimmte früher sehr schlecht; nach den von Herrn Cl. Zimmermann schriftlich mitgetheilten Resultaten seiner Untersuchungen verschwanden die Unterschiede.

In den meisten Fällen liessen sich durch geringe Änderungen des einen oder des andern der in die Formeln eingesetzten Werthe die Unterschiede zwischen berechneten und beobachteten Werthen zum Verschwinden bringen, was absichtlich vermieden wurde, um Willkürlichkeiten, wenn auch nur scheinbare, zu verhüten. In vereinzelten Fällen, z. B. bei Borax, gibt die Formel s = 0.332, die Beobachtung 0.229, bei Phosphortrichlorid s = 0.166 gegenüber 0.209 u. dergl., wobei im ersten Falle der berechnete zu dem beobachteten Werthe sich wie 3:2, im zweiten wie 4:5 verhält. Derartige Abweichungen dürfen der unrichtigen Bestimmung der in der Gleichung für das Atomgewicht (A) eingeführten Werthen zugeschrieben werden.

Eine vollständige Übereinstimmung kann mit Hilfe der jetzt vorliegenden Beobachtungsmaterialen, ohne Willkürlichkeiten dabei zu begehen, auf keinen Fall, wenn selbst eine vollständig naturgemässe Formel vorliegt, erreicht werden, da die zur Verfügung stehenden Werthe oft gegen alles Erwarten schwanken und von einander abweichen, wobei namentlich das Gesetz der Veränderlichkeit der specifischen Wärme mit der Temperaturänderung bekannt sein müsste, oder doch weit eingehendere, sich über alle Elemente gleichmässig wie über eine grosse Anzahl von Verbindungen erstreckenden Untersuchungen nothwendig wären. Es müssten ferner die Werthe der Schmelz- und Siedetemperaturen, namentlich bei strengflüssigen Körpern, ja in vielen Fällen sogar die Dichtigkeiten genauer bestimmt werden. Die Einführung eines die specifische Wärme bei verschiedenen Temperaturen betreffenden Gliedes in die Formel V würde wenig Schwierigkeiten machen; unter den vorliegenden Verhältnissen aber auch nutzlos sein.

Die Übereinstimmung der hier angeführten, mit Hilfe der Formel V, wie mit der Stammformel IV abgeleiteten Werthe mit den beobachteten ist so gross, dass die Annahme gestattet erscheint: Es bestehen in der That ähnliche Beziehungen zwischen den physikalischen und damit auch den chemischen Eigenschaften der einfachen und zusammengesetzten Körper, wie solche durch die Formeln ausgesprochen werden; die dabei zu Grunde liegenden Gesetze scheinen nicht sehr complicirt zu sein und die Formeln selbst geben den allgemeinen Ausdruck der dabei bestehenden Gesetze.

Es sei vorläufig hier darauf aufmerksam gemacht, dass die erste Formel $K\!=\!100\Delta\left(\frac{\alpha}{\epsilon}\right)^2$ der Newton'schen Attractionsformel ähnlich ist. An die Stelle der Massen tritt die Dichtigkeit, an die Stelle der Entfernungen der Anziehungscentren treten die Verhältnisse der Elasticitäts- und Wärme-Ausdehnungscoefficienten $\left(\frac{\epsilon}{\alpha}\right)$. Während bei der Bewegung der Weltkörper nach Newton's Gesetz vorausgesetzt wird, dass der Anziehung die Centrifugalkraft entgegenwirkt, um jene in ihren Bahnen zu erhalten, macht sich in unserer Formel schon die zweite Kraft geltend, indem auf den Einfluss der Wärme Rücksicht genommen werden muss.

In den körperlichen Gebilden stehen sich die Cohäsions- und Wärmewirkungen entgegen, wie bei der Bewegung der Weltkörper Centrifugal- (Tangential-) Kraft und Centripetalkraft. Von dem Überschusse der Anziehung der kleinsten Theilchen über die Wärmewirkung, von dem Gleichgewichte beider oder von dem Überschusse der Wärmewirkung über die Anziehung hängt der feste, flüssige oder gasförmige Aggregatszustand der Körper ab.

Gäbe man der Formel V die Form

$$A^3 s^3 \cdot \frac{A}{\Delta} = \frac{T}{\Delta^2 s^2},$$

dann würde: das Product aus dem Atomvolumen mal der dritten Potenz der Atomwärme gleich der Schmelztemperatur durch das Quadrat der relativen (specifischen Wärme bei gleichem Volumen) dividirt, oder nach der Form

$$A^4 \cdot s^4 = \frac{T}{\Delta \cdot s}$$

müsste der Werth von $T:\Delta s$, die Schmelztemperatur vom natürlichen Nullpunkte aus gemessen durch die relative Wärme (entsprechend dem Dulong'schen Gesetze: As nahe constant) annähernd constant sein. Inwiefern dies der Fall ist, zeigen folgende Werthe von As, welche unter Benützung der Constanten 0.95 berechnet sind.

	berechnet	beobachtet	- 1	perechnet	beobachtet
Eisen	. 64	6.3	Magnesium	6.4	6.0
Gold	. 6.4	$6 \cdot 2$	Blei	6.5	$6 \cdot 4$
Silber	. 6.4	$6 \cdot 2$	Wismuth	$6 \cdot 2$	$6 \cdot 4$
Kupfer	. 6.0	6 · 1	Zinn	$5 \cdot 7$	6.5
Aluminium.	6 4	$6 \cdot 0$	Selen	$6 \cdot 3$	6.3
Kadmium.	. 5 · 7	$6 \cdot 2$	Jod	5.8	$6 \cdot 4$

Um zu zeigen, inwiefern obige Formel und selbst deren bei organischen Verbindungen benützte Annäherung $\frac{T}{\Delta s} = 800$ sich auf organische Verbindungsreihen anwenden lässt, seien folgende Zusammenstellungen angeführt.

	Gegenserige	beziehungen der Eiger	ischaften der Koi	per. /85
Specifische Wärme s_1 berechnet nach $s_1 = \frac{(T \text{ Siede})}{800 \text{ Å}}$	0.532	0.594 0.616 0.629	0.382 0.466 0.500 0.382 (?) 0.583	0 490
Siedepunkt vom gewöhnlichen Null-punkte t_1 (Siede)	berechnet aus den Elementen. CH_4O $61+0.5\cdot6=61$ -0.610 beob. C_2H_6O $61+3.5\cdot6=78$	nach w ulth er hach w ulth er $C_9H_8O61+6.5\cdot6=95$ $C_4H_{10}O61+9.5\cdot6=110$ $C_5H_{12}O61+12.5\cdot6=128$ $C_6H_{14}O61+12.5\cdot6=128$ $C_6H_{14}O61+15.5\cdot6=145$ $C_7H_{16}O61+18.5\cdot6=162$ berechnet aus den Elementen. $C_8H_{18}O61+21.5\cdot6=179$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$C_6H_6 \dots$ 80+ 0.8 = 80 $C_7H_8 \dots$ 80+ 3.8 = 104 $C_8H_{10} \dots$ 80+ 6.8 = 128 $C_9H_{12} \dots$ 80+ 9.8 = 176 $C_{10}H_{14} \dots$ 80+12.8 = 176
Specifische Wärme s (0·590 beobachtet	:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.459 beobachtetC ₂ H	(0.3999 bei 5—30° (0.4360 » 20—30
Dichte A	75° (66 2) 0.8142 bei 0° 78 (78.3) 0.8095 » 0	0.8032 * 18.5 0.8248 * 0 0.833 * 0	1.22 1.070 1.0161 bei 0° 1.5183 * 0 0.9555 * 0	0.89 bei 5—10°
Siedepunkt T (Siede-)	Methylalkohol60—66·5° (66 2) 0·8142 bei 0° Äthylalkohol 78 (78·3) 0·8095 » 0	Propylalkohol 96 Butylalkohol 109 Amylalkohol 130—134 (131) Caproylalkohol Önanthylalkohol Caprylalkohol	Ameisensäure 100 Essigsäure 119 (118) Propionsäure 139 · 5 Buttersäure 161 · 7 Valeriansäure 174 5	Benzol 80-82 Toluol 104-106 Xyiol 128 Cumol 152 Cymol 176

			S	
			berechnet	berechnet
	T (Siede)	Δ	aus Elementen	nach $\frac{T}{800\Delta}$
Octan	121	0.732	0.62-0.68	0.67
Nonan	136	0.742	0.63-0.69	0.69
Dekan	151	0.760	0.65-0.70	0.70
			T (Siede)	

*	(61000)
Octan C ₈ H ₁₈	121 = 121 + 0.5
Nonan C ₉ H ₂₀	136 = 121 + 3.5
Dekan C ₁₀ H ₂₂	151 = 121 + 6.5

Mit Hilfe der verschiedenen oben angeführten Gleichungen lassen sich eine Reihe von Combinationen von oft sehr einfacher Form herstellen und Beziehungen zwischen den einzelnen Eigenschaften der Körper darstellen. Die verschiedenen sich ergebenden Formeln legen dar:

dass Atomgewichte, Atomvolumina, Atomwärmewerthe u. dergl. allein nicht genügen, um eine allgemein giltige Gesetzmässigkeit zu ergründen. Nothwendig erscheint dazu die Combination von mindestens vier Elementen der Eigenschaften, wenn nicht eine allgemeine Annäherung genügen soll.

Behufs genauer Darstellung der Werthe irgend einer Eigenschaft wird aus den oben bezüglich der specifischen Wärme schon angeführten Gründen jede Formel weit complicirter, wie dies auch bei der Anwendung der einfachen Bewegungs- und Anziehungsgesetze Kepler's und Newton's hinsichtlich der Einführung der Massen und Geschwindigkeiten der Fall ist und jeder Versuch zu grösserer Annäherung lehrt.

Zur Begründung des Gesagten mögen einige Beispiele folgen.

Grove hatte (in »Verwandtschaft der Naturkräfte «, deutsch von Schaper) ausgesprochen: »Die specifische Wärme der Metalle stehe in keinem Verhältniss zu ihrer Dichte oder ihrer Ausdehnungscoëfficienten «. Von dem Gegentheile muss das Vorhergehende überzeugen; aber auch davon, dass ohne Herbeiziehung weiterer Eigenschaften nicht zum Ziele zu gelangen ist

Annähernd genügt indessen schon die Formel

$$K = 70.\overline{\Delta s^2} - 6$$

zur Bestimmung der absoluten Festigkeit der Metalle, ohne dass ein viertes Element eingeführt wird. Setzt man die Constanten von Δ und s für die verschiedenen Metalle ein, dann erhält man für K die Werthe bei

Eisen49	Kadmium 12	Zinn 5.6
Kupfer 43	Gold17	Blei 2 6
Messing 38	Silber 16	Antimon 2 · 1
Platin 29	Aluminium14	Wismuth 0.7
Palladium27	Zink12	Stahl54 1

oder Werthe, welche sich der Erfahrung schon ordentlich nähern.

Nach Cantoni (Manuale di fisica) stellt sich das Verhältniss der relativen Wärme (Δs) zum Elasticitätscoëfficienten (ϵ) für alle nicht krystallisirten Metalle nahe constant (1·36). Bei den dem Verfasser vorliegenden Zahlen finden jedoch bedeutende Abweichungen statt, während weit näher constante Werthe erhalten werden durch die Producte Δs . $\sqrt{\epsilon}$ oder Δs . $\sqrt[3]{\epsilon}$ (nahe 0·0068 oder 0·027).

Man erhält beispielsweise nach Einsetzen der betreffenden Werthe für

	<u>.</u>	$\Delta s. \sqrt{\varepsilon}$	Δ s $\sqrt[3]{\epsilon}$
	Eisen	0.0064	0.032
	Kupfer	0.0081	0.037
	Palladium	0.0068	0 028
	Platin	0.0056	0.027
	Silber	0.0070	0.031
	Gold	0.0075	0.033
	Aluminium	0.0065	0.027
	Zinn	0 0065	0.025
	Blei	0.0086	0·029 u.s. w.
ferner für			
	Zink	0.0077	0.032
	Wismuth	0.0056-0.0060	0.021
	Antimon	0.0046	0.024

¹ Bei Stahl ist $\Delta = 7.85$ und s = 0.118 gesetzt.

für zusammengesetzte Körper

Δs	8	$\Delta s. \sqrt{\varepsilon}$	$\Delta s \sqrt[3]{\epsilon}$
Stahl	0.0000333	0.0052	0.029
Stain	591	70	6.035
Gusseisen	0.0001000	0.0082 (0.041
ousselson	1015	93}	0 041
Messing 0.79	0.0001563	0.0093	0.042
Glas 0.30	0.0001450	0.0036	0.016

Da $\frac{A}{\Delta} \cdot \Delta s =$ nahe constant ist, im Mittel gleich 6·4 gesetzt werden kann, so müssen auch $\frac{A}{\Delta} \sqrt{\epsilon}$ und $\frac{A}{\Delta} \sqrt[3]{\epsilon}$ nahe constant sein.

Man wird indessen hierbei, wie im vorhergehenden Falle, selbst nicht durch Änderung der einzelnen Werthe innerhalb der Versuchsgrenzen eine volle Übereinstimmung erzielen, da die bestehenden Beziehungen nicht so sehr einfacher Natur sind.

Ähnlich verhält es sich mit dem Ausdrucke $\sqrt{\alpha}$. $\sqrt[3]{T}$ = 0.044 im Mittel. Man erhält für

Eisen 0.043 Kupfer 0.046 Palladium 0.040 Platin 0.036 Silber 0.048 Kobalt 0.043	Gold 0.042 Zink 0.048 Kadmium 0.048 Blei 0.045 Nickel 0.044 Indium 0.043
Magnesium	Selen
dagegen für	
Aluminium	Wismuth 0 · 029
Schwefel	Antimon0.029
Zinn0.035	Phosphor
Rhodium	u. s. w.
Iridium0.034	
	•

Ferner schliessen sich an:

	α	T	$\sqrt{\alpha}\sqrt[3]{T}$
Stahl0	.0000113	1673	0.042
Gusseisen	109	1473	0.040
Messing	182	1200	0.044

	œ	T	$\sqrt{\alpha}\sqrt[3]{T}$
Bronze	180	1173	0.044
Phosphorbronze	180	1200	0.045
Glas	0000078	1273	0 030
Glas)	94	1673	0.035
Eis	000052	273	0.046

Ohne durch Änderungen einzelner Werthe eine grössere Gleichförmigkeit der Werthe anzustreben, stimmen eine grössere Anzahl der Stoffe nahe zu dem Mittel; eine andere Zahl weicht allerdings stark ab. In den meisten Fällen dehnen sich die Extreme nicht über die Grenzen aus, welche Pictet's Formel $\alpha.T.\sqrt[3]{\frac{A}{\Delta}}$ für die chemischen Elemente ergeben. Die letzteren

Werthe schwanken zwischen 3.5 und 6.6 oder im Verhältniss von 1:1.9, während nach dem Producte $\sqrt{\alpha}$. $\sqrt[3]{T}$ nur ausnahmsweise diese Grenzen erreicht werden. Bei einzelnen Stoffen mögen neuere Bestimmungen der Constanten die Reihe vielleicht noch etwas mehr ausgleichen, wie bei reinem Aluminium, bei Antimon, Wismuth u. s. w. Glas wird bei der

Im Allgemeinen bestätigen die angeführten Beispiele, dass zur genauen Darstellung einzelner physikalischer Constanten aus andern gegebenen nicht die allereinfachsten Formeln, nicht zwei Elemente, zur Bestimmung genügen.

angegebenen Temperatur nicht eigentlich flüssig.

Bei der Untersuchung der Eigenschaften des Wassers stösst man dadurch auf Schwierigkeiten, dass der Werth von

$$s = 1.00$$
 in flüssigem $s = 0.475 - 0.504$ in festem und $s = 0.469 - 0.481$ in dampfförmigem

Zustande ist.

Setzt man für Wasser (H2O) das Atomgewicht zu

$$\frac{1.2+16}{3} = 6$$
,

dann wird

oder es müssten sich die Werthe von A in den letzteren Fällen verdoppeln, um die mittlere Atomwärme in allen drei Fällen auf den gleichen Werth zu bringen.

Setzt man in der Formel
$$s=0.95 \sqrt[s]{\frac{T}{A^4\Delta}}$$

bei
$$\Delta = 1 \, (\text{Wasser}) \, \Delta = 0.90 \, (\text{Eis})$$
 $T = 0 + 273^\circ$, dann wird $s = 0.732 \, 0.751$ $T = 100 + 273^\circ$, $s = 0.780 \, 0.800$

wenn A = 6 gesetzt wird.

Die auf diesem Wege bestimmten Werthe für s bilden nahezu das Mittel aus denjenigen für Wasser und Eis oder Dampf.

Kopp berechnete für den Werth von As in festen Verbindungen 4·0 bei Sauerstoff und 5·88 (aus Palladiumwasserstoff) für Wasserstoff und setzt die Atomwärme des Wassers in wasserhältigen Verbindungen derjenigen des Eises gleich.

Die abgekürzte Formel $s=\frac{T}{800~\Delta}$ gibt bei $T=373^\circ,$ $s=0.518,^1$ wenn $\Delta=0.90$ gesetzt wird.

Nach den Kopp'schen Werthen würde (nach Wöstyn's Regel)

$$s = \frac{2.5 \cdot 88 + 1.4 \cdot 0}{2 \cdot 1 + 1.16} = \frac{15 \cdot 76}{16} = \text{rund } 1;$$

rechnet man indessen nach der specifischen Wärme der Gase, dann wird

$$s = \frac{2.1.3 \cdot 405 + 1.16.0 \cdot 218}{2.1 + 1.16} = 0.572.$$

Auf diesen Wegen lassen sich annähernd die Werthe von s für verschiedene Fälle berechnen, jedoch für den merkwürdigen Wechsel derselben bei dem Wasser nicht direct auswählen, da s bei Eis und Dampf geringer ist als bei Wasser. Bei fast allen bekannten Körpern nimmt s mit den Temperaturen zu,

¹ Bei $T = 273^{\circ}$ und $\Delta = 1$ wird s = 0.381.

während bei der Verbindung H_2O ein Sprung eintritt, wenn sie flüssig wird und wieder ein Rückgang bei Eintritt in den dampfförmigen Zustand. Es müssen bei diesen Vorgängen Umlagerungen stattfinden, welche wohl zwei verschiedene Formeln erfordern dürften.

Aus der Beziehung $\frac{\epsilon}{\alpha}=7.\left(\frac{A}{\Delta}\right)^{\frac{2}{3}}\cdot\left(\frac{1}{Ts}\right)^{\frac{1}{3}}$ lassen sich nicht nur annähernd mindestens die Werthe von ϵ und α bestimmen, sondern es lassen sich, wie aus anderen Beziehungsformeln, eine Reihe eigenthümlicher Beziehungen ableiten. Man erhält für

$\sqrt{rac{A}{\Delta}}$	$\sqrt[3]{\varepsilon}$	$\sqrt{\frac{A}{\Delta}}:\sqrt[3]{\epsilon}$	oder $\sqrt{\Delta s}$	$\sqrt{\Delta s}$. $\sqrt[3]{\varepsilon}$
Eisen 2·7	0.037	73	0.93	0.035
Kupfer 2 · 7	44	61	0.92	` 41
Platin 3 · 0	38	79	0.83	31
Zink 3.0	51	60	0.71	36
Silber 3.2	52	61	$0 \cdot 77$	40
Gold 3·2	54	60	0.79	42
Aluminium 3·2	52	61	0.74	39
Kadmium 3.6	61	60	0.70	43
Zinn 4 · 1	63	65	0.64	40
Blei 4·3	82	51	0.60	40
Antimon 4 · 2	64	66	0.58	37
Wismuth 4 · 6	71	64	0 74	52
		$\overline{M} = 62$	\tilde{M}	I = 0.040

Hinter »oder« ist eine noch aus früher gegebenen Beziehungen erhaltenen Reihe der Werthe $(\sqrt{\Delta s} \text{ und } \sqrt{\Delta s}.\sqrt[3]{\epsilon})$ angeführt. Es sind somit die Werthe $\sqrt{\frac{A}{\Delta}}:\sqrt[3]{\epsilon}$ und von $\sqrt{\Delta s}.\sqrt[3]{\epsilon}$ nahe constant, wie dies auch das Dulong'sche Gesetz verlangt, sobald eine der Reihen eine gewisse Constanz zeigt.

Man würde sich indessen täuschen, wollte man derartige Werthe constant setzen; so wenig darf man dies, als bei dem Werthe von As bei genaueren Rechnungen. Setzt man beispielsweise $\sqrt{\frac{A}{\Delta}} \cdot \frac{1}{\sqrt[3]{\epsilon}} = 62$ und entwickelt damit den Werth von α aus obiger Formel

$$\alpha = \frac{A}{\Delta} \cdot \frac{\sqrt[3]{Ts}}{1 \cdot 750000} ,$$

dann erhält man für

	Werthe von α					
	berechnet	beobachtet				
Eisen	.0.000024	0.000012				
Kupfer	. 21	18				
Silber	. 23	20				
Zinn	. 28	21				
Blei	. 27	29				
Antimon	. 34	11				

u. s. w.

Obwohl einzelne Werthe gut stimmen, wird doch der Beweis geliefert, dass man nicht ohne Weiteres derartige Constanten, wie sie sich oben fanden, setzen darf.

Bezüglich der Werthe von α — Ausdehnung durch Wärme — sei noch folgende Zusammenstellung gegeben. Sie gewährt mindestens die Einsicht, dass Werthe von $\frac{A}{\Delta}$ und T — die Atomvolumina und die Schmelztemperaturen (damit auch die Festigkeit, da dieselbe, wenn man die specifische Wärme in Betracht zieht [Formel III, S. 754] ähnlich verläuft), in der That eine Hauptrolle spielen.

		α		$\frac{A}{\Delta}$	<i>t</i> i Grade	
	Kohlenstoff (Diamant)	0.0000018	3.43		sehr h	och
	Silicium	28		11.3	sehr h	och
	Arsen	56		$13 \cdot 2$		210
7	Osmium	66	8.7		2300	
١	Iridium	68	8.6		1950	
Į	Rhodium	85	8.5		1800	
ì	Platin	. 90	9.0		1780	
1	Ruthenium	90	8.7		1800	
1	Palladium	0.0000106	8.9		1500	
	Antimon	112		17.9		217
(Eisen	120	$7 \cdot 2$		1500	
₹	Kobalt	124	6.7		1600	
(Nickel	128	6.5		1500	
	Wismuth	130		21.2		275

	a	$rac{A}{\Delta}$	<i>t</i> in Graden C.
Phosphor	0.0000130	17.4	44
Gold	148	10.1	1050
Tellur	170	20.2	455
Kupfer	175	7 · 1	1060
Silber	200	10.3	950
Zinn	211	16.4	235
Aluminium	227	10.4	850
Magnesium	270		600
Zink	300	9.1	430
Blei	298	18.2	330
Thallium	306	17 · 1	290
Kadmium	310	13.0	500
Selen	370	18.0	217
Indium	440	15.3	176
Natrium	711	23.6	97
Schwefel	750	15.6	114
Kalium	842	45.6	32

Im Allgemeinen nimmt α zu mit abnehmendem t und zum grösseren Theile mit zunehmendem $\frac{A}{\Delta}$, jedoch weniger durchschlagend. Für die Abweichungen bei t sind ganz entschieden die Gefügeeigenschaften (theilweise auch die Werthe von $\frac{A}{\Delta}$, welche grösser sind bei relativ kleineren Werthen von t) massgebend — Arsenik, Antimon, Phosphor, Tellur, Zinn u. s. w. Schon aus den vorher angegebenen Gründen kommt bei α die Festigkeit noch in Betracht, während bei den Werthen von ϵ , den Elasticitätswerthen, das Atomvolumen $\left(\frac{A}{\Delta}\right)$ mehr massgebend ist.

Für α gibt schon das Product $\sqrt[3]{\frac{A}{\Delta}}$. \sqrt{T} eine der obigen ähnliche Reihe, wenn man die betreffenden Werthe einführt.

Eine Zusammenstellung der Producte aus der Ausdehnung und der Schmelztemperatur oder eventuell auch der Festigkeit, noch besser aber der Producte der Ausdehnung und den Quadratwurzeln aus den Schmelztemperaturen zeigt sofort eine Ähnlichkeit in der Reihenfolge der Metalle mit derjenigen der Leitung von Wärme und Elektricität.

Es betragen:

	Leitungsfähig- keit der Wärme in der Luft	Leitungsfähigkeit der Elektricität in der Luft	Werthe von $\alpha \sqrt{t}$
Silber	. 100	100	0.000632
Kupfer	. 75	85	617
Gold	. 53	60	547
Messing	. 25	22	546
Zinn	. 15	12	344
Eisen	. 12	13	484
Blei	. 9	11	404
Platin	. 8	10	335
Antimon	. ?	4	220
Wismuth	. 2	1 '	202

Man erhält ferner für

Nickel						•		.0.000481
Selen .					_	_		.0:000518.

was bei unbeleuchtetem Selen nicht stimmt.

'Diamant.....0.0000537

was gut stimmt, trotzdem $t = 3000^{\circ}$ gesetzt ist ($\alpha = 0.0000018$), da Diamant schlecht, ja sogar erst bei 800° die Elektricität leitet.

Silber und Kupfer stellen sich hoch oben, Wismuth tief unten hin. Auch bei sehr hoch für den Diamanten angenommener Schmelztemperatur entspricht demselben eine sehr geringe Leitungsfähigkeit.

Berechnet man unter der Annahme: die Leitungsfähigkeit sei proportional der inneren kinetischen Energie der leitenden Stoffe und setzt, gemäss den Resultaten früherer Untersuchungen, die Masse proportional der Dichtigkeit, dann lässt sich die den Elementchen, welche lebendige Kraft aufnehmen, nöthige Geschwindigkeit (v) bestimmen.

Bezeichnen α die Ausdehnungscoëfficienten der Körper durch Wärme, t die Schmelztemperatur, K die absolute Festigkeit pro Quadratmillimeter in Kilogrammen, Δ die Dichtigkeit und s die specifische Wärme der betreffenden Stoffe, dann erhält man, wenn man die Werthe bei Eisen als Einheit wählt, bei

<i>v</i>	$\alpha^2 t$	$\alpha^2 \frac{K}{\Delta_S}$,	wenn l
Silber2.5	2.0	$2 \cdot 7$	7
Kupfer	1.7	2.0	6
Gold1·4	1 • 4	1 · 4	$4 \cdot 2$
Messing	1 • 4	1.5	1.8
Zinn1·1	0.5	0.9	0.8
Eisen 1	1	1	1
Blei0.7	0.8	0.6	0 5
Platin	0.5	0.5	0.3
Wismuth0.4	0.2	0.3	0.1

Die hier abgerundeten Werthe von (*l*), dem Leitungsvermögen der angeführten Körper, sind in der folgenden Tabelle in bestimmterer Weise aufgeführt.

Unter der Benützung des Werthes $v=\alpha^2\frac{K}{\Delta s}$ würde (da die Leitungsfähigkeit l proportional $\Delta \cdot v^2$)

$$l = \beta . \Delta . \left(\alpha^2 \frac{K}{\Delta s}\right)^2 VI)$$

Nimmt man die lineare Ausdehnung des Silbers durch Wärme (0·0002) als Einheit an, dann berechnen sich die relativen Leitungswerthe, wenn $\beta=\frac{1}{140}$ gesetzt wird, nach Formel VI in folgender, aus der Tabelle zu ersehenden Weise. Die Werthe von l können, da es sich nur um Annäherungswerthe handeln kann, für Wärme- und Elektricitäts-Leitungsfähigkeit angesehen werden, wenn schon in der Wirklichkeit gewisse, nach Fr. Weber sogar gesetzmässige Abweichungen statthaben.

				Į	l beobachtet für		
α	Δ	K	$\Delta_{\mathcal{S}}$	berechnet	Wärme	Elektricität	
Silber1	10.5	22	0.60	100	100	100	
Kupfer0.90	8.9	36	0.85	68	70—80	8090	
Gold0·74	19.3	22	0.62	52	53	55 - 65	
Aluminium1.14	2.6	18	0.57	39	28 - 34	34 - 54	
Zink1.50	$7 \cdot 2$. 8	0.68	36	21 - 31	24-30	
Messing 0 · 96	8.4	20	0.79	29	. 20	18 - 27	
Kadmium 1 • 55	8.6	4	0.47	26	22	22 - 24	
Eisen0.60	7.8	38	0.87	14	12 - 17	12-16	
Palladium 0.56	12.1	27	0.71	13		13-14	
Zinn 1 · 10	$7 \cdot 3$	4	0.40	8	15	12-14	
Platin 0 · 40	21:5	30	0.70	7	8	8-10	
Blei1.50	11.3	1.5	0.35	7	7-8.5	7 8	
Antimon0.55	6.7	0.7	0.38	0.1	$4\cdot 4$	$4 - 4 \cdot 3$	
Wismuth0.62	9.8	0.9	0.30	1	1.1-1.8	$1 \cdot 2$	

Die beiden Zusammenstellungen von l— die theoretisch berechneten, wie die Reihen der für Wärme und Elektricität beobachteten Werthe — zeigen sofort den übereinstimmenden Gang; sie lassen aber auch klar erscheinen, dass durch Änderung der eingesetzten Werthe innerhalb den Beobachtungsgrenzen, wie durch Einführung einer weiteren Constanten die Annäherung noch günstiger werden könnte. Kupfer steht etwas nieder; führte man den Festigkeitswerth für Kupferdraht ein, wie er in technischen Handbüchern gerechnet wird (in der »Hütte«, Taschenbuch, zu $42 \, kg$), dann steigt der Werth von l auf 80.

Bei Diamant ist der Ausdehnungscoëfficient gegenüber Silber 0.07, die Dichtigkeit ist 3.5, die specifische Wärme 0.120. Setzt man die Festigkeit auch sehr hoch, zu $100 \, kg$ pro Quadratmillimeter, obwohl Festigkeit und Oberflächenhärte nicht in einfacher Beziehung stehen, dann erhält man l doch nur zu 0.03. Für Glas wird l = 0.01 u. s. w.

Anstatt die Leitungsfähigkeit der Metalle von der Wärmeausdehnung der Dichtigkeit, Festigkeit und specifischen Wärme abhängig sein zu lassen, lassen sich nun auch andere Eigenschaften damit verknüpfen. An der Stelle von K lässt sich setzen $100~\Delta \left(\frac{\alpha}{\epsilon}\right)^2~(\mathrm{IV})~\mathrm{oder}~\left(\frac{\Delta}{A}\right)^2 \cdot \frac{As\cdot T}{5}$, so dass die Ausdehnung durch Wärme und Belastung oder die Schmelz-

temperatur wesentlich eingeführt wird, stets aber immer wieder der Gegensatz zwischen Anziehung und Wärmegegenwirkung hervortritt.¹

Führt man die Schmelztemperatur ein, dann erhält man für Quecksilber den Werth von l zu 0.70, womit es den durch Erfahrung festgestellten Rang zugewiesen erhält. Mit dem Leitungsverhältniss 1.6 steht es nämlich bei Wismuth.

Die von Riess für das Erwärmungsvermögen der Metalle durch Elektricität gefundenen Werthe wachsen nahe entsprechend den Producten aus specifischer Wärme und Atomgewichten (Atomwärme).

	Werth des	
	Erwärmungs-	Werthe
Metalle	vermögens	von As
Kupfer	0.113	6.0
Silber		6.14
Gold	0.211	6.36
Eisen	0.708	6.36
Platin	1.000	$6 \cdot 30$
Zinn	1.570	6.61
Blei	2.876	6.50

Selbstverständlich entspricht diese Reihe im Allgemeinen jener der Wärmeleitung (im umgekehrten Sinne).

$$\frac{1}{2 \cdot 8} \left(\frac{\alpha^{3/2} \cdot K}{\Delta s} \right)^{3/2} = L$$

setzen. Man erhält dadurch die Werthe:

für Silber100	für Eisen 27
Kupfer 70	Zinn
Gold 45	Platin
Aluminium 47	Blei 9
Zink 45	Antimon 0.5
Kadmium 23	Wismuth 0.1

welche gleichfalls nicht übel stimmen. Für Glas erhält man 0.01 und ebenso einen kleinen Werth für Diamant.

¹ Man kann die vier in Betracht kommenden Werthe der Eigenschaften einfach in der Formel $\alpha^3/_2$. $\frac{K}{\Delta s}=L$ oder wenn auf die übliche Einheit, das Silber, bezogen wird, um eine der üblichen Reihe ähnliche zu bekommen

Die Producte aus den Atomgewichten und den Fortpflanzungsgeschwindigkeiten des Schalles in den Metallen sind für die meisten Metalle nahe constant. Legt man die Wertheim'schen Werthe zu Grunde, dann finden nur da und in gleichem Sinne Abweichungen statt, wenn die Werthe des Dulong'schen Gesetzes (As = Const.) unter dem Mittel bleiben.

Metalle	Werthe der Fortpflanzung des Schalles (v)	A.v	A . s
Eisen	. 15.11	846	6.3
Kupfer	. 11.22	707	6.0
Zink	. 11.01	616	6 · 1
Messing	. 10.70	685	6.0
Platin	. 8.22	$\frac{1595}{2} = 798$	6.3
Silber	. 8.06	870	6.1
Kadmium	. 7.90	885	6.1
Zinn	7.98	875	6.5
Gold	. 6.42	$\frac{1258}{2} = 629$	6.4
Blei	. 4.26	878	6.3

Vergleicht man die Zahlen der Fortpflanzungsgeschwindigkeiten des Schalles in gezogenen Metallen (nach Wertheim) der Reihenfolge nach mit der nach Formel IV $K_4=100~\Delta\left(\frac{\alpha}{\epsilon}\right)^2$ berechneten, dann zeigt sich eine mehr als allgemeine Übereinstimmung zwischen beiden Gruppen, wenn man, wie oben geschehen, die Werthe der Producte A.v für Platin und Gold — für die schwersten Metalle — halbirt. Die Festigkeit bestimmt somit wesentlich die Fortpflanzungsgeschwindigkeit des Schalles in den Metallen; zugleich aber auch die relative Wärme, wie nachfolgende Zusammenstellung zeigt.

Es betragen die Werthe bei

Fortpflanzungsgeschwindigkeit nach							
				Abso-			
Wert-	Kohl-	Tomlincon	Chladni	lute			
heim	rausch	Tomlinson	Chiadhi	Festigkeit	Δ s		
Blei4.26	1300			2	0.36		
Zinn7.48	2300		7.5	3	0.41		
Kadmium 7.90				$3 \cdot 5$	0.49		

	Fortpflanzungsgeschwindigkeit nach					Abso-	
	Wert- heim	Kohl- rausch	Tomlinson	1	Chladni	lute Festigkei	t Δs
Gold	.6.42	2100				20	0.62
Silber	8.06	2700	2801 ($\Delta = 10$	•47)	9.0	22	0.60
Platin	$8 \cdot 22$	2800	2750 ($\Delta = 21$.05)		30	0.69
Messing	10.70	3200			10.7	28	0.79
Zink	11.01	3500				12 (36 theor.)	0.68
Neusilber			$3860 \ (\Delta = 8)$	63)			(0.70 ?)
Platinsilber			2804 ($\Delta = 12$	•19)		[36]	
Kupfer	11.17	3700	3958 ($\Delta = 8$	•90)	12 0	36	0.81
Eisen	15.11	5000	$5096 (\Delta = 7)$	•68)	16.7	40	0.88
Gussstahl	15.11	5100				60	0.89
Stahldraht	14 96		5198 ($\Delta = 7$	•75)		80	0.89
Glas ($\Delta = 2.5$)	16.70	5000				2	0.49
	Leit	ung der					
	Schallge	eschwind	ig-		1		
	keit na	ch Chlad	ni Δ		E	s 1	$\Delta_{\mathcal{S}}$
Eichenholz		10.7	0.70	1	121.4	0.57	0.40
Buche, Birne	:	12.5	0.82		980.4	0.50	0.41
Ahorn	:	13.3	0.67	1	021.4		
Ulme, Birke		14.4	0.60 u. 0.81	1165	5·5 u. 99	97	
Linde, Kirsche.	1	15.0					
Weide, Fichte .	1	16:0			564		
Tanne	1	18.0	0.49	1	113.2	0.65	0.32

Bei Wertheim und Chladni sind die Schallgeschwindigkeiten mit jener der Luft (332·24 m) verglichen, bei Kohlrausch und Tomlinson in Metern pro Secunde gegeben.

Bei den Metallen nimmt die Schallleitung entsprechend Δs im Allgemeinen zu und ab, und ist dieselbe am grössten bei den absolut festeren. Bei den Holzarten könnte man eher auf das Umgekehrte schliessen, als dies bei der Festigkeit der Fall ist. Je fester das Holz, umso geringer die Schallleitungsgeschwindigkeit; umgekehrt bei den Metallen.

In entsprechender Beziehung müssen auch die Longitudinalschwingungen stehen.

¹ Specifische Wärme (s) nach Mousson (Physik).

Die elektrische Spannungsreihe der Metalle, wie sie Péclet aufstellte, folgt nahe den Verhältnissen der Producte aus dem Atomvolumen und den dritten Wurzeln aus der absoluten Festigkeit. Antimon, für welches indessen die Festigkeit weniger genau bekannt ist, macht die wesentlichste Ausnahme. Durch geringe Änderungen der Werthe von K gelangen die Producte für Eisen und Kupfer in die richtige Reihenfolge. Es sind für

	$\frac{A}{\Delta}$	$\sqrt[3]{\overline{K}}$	$\frac{A}{\Delta} \sqrt[3]{R}$
Zink	. 9.1	1.82	16.5
Blei	.18.1	1.10	20.0
Zinn	.16.4	1.30	21.3
Wismuth	.21.3	1.00	21.2
Antimon	.17.9	0.90	16.1
Eisen	. 7.2	3.30	23.7
Kupfer	. 7.1	3 · 10	22.0
Silber	.10.3	2.60	$26 \cdot 7$
Gold	.10.1	2.70	$27 \cdot 3$
Platin	. 9.0	3.10	27.9

Es stellt sich die Reihe

nach Pfaff
$+ \frac{A}{\Delta} \sqrt[3]{K}$
Zink16.5
Kadmium19.8
Zinn
Blei 20.0
Wolfram?
Eisen 23 · 7
Wismuth
Antimon
Kupfer 22 • 0
Silber
Tellur?
Platin
Palladium27.0

Obige Reihen ordnen sich im Allgemeinen von + nach — nach zunehmender Verwandtschaft zu Sauerstoff, wie längst

bekannt, dann aber nach zunehmender Festigkeit oder Schmelztemperatur modificirt nach dem jeweiligen Atomvolumen. Die Ausdehnungscoëfficienten für Belastung oder Wärme nehmen von + nach — ab, wenn auch nicht ganz regelmässig, wie folgende Beispiele zeigen, wenn die ähnlich verlaufende Reihe der Spannungsdifferenzen nach Hankel zu Grunde gelegt wird. Es ist

	dabei für $\frac{A}{\Delta} \sqrt[3]{A}$	<u>K</u> s	α
Zink-Blei = 44	Blei 20.0	0.000558	0.000028
\sim Zinn = 51	Zinn 21.0	255	22
\sim Eisen = 84	Eisen 23.7	058	12
\sim Kupfer = 100	Kupfer 22.0	087	18
\sim -Gold = 110	Gold 27:3	156	15
\sim Silber = 118	Silber 26.7	138	19
\sim Platin = 123	Platin 27.9	056	09

Bei der Unsicherheit in den einzelnen Beobachtungswerthen, wodurch die Reihenfolge weder ganz sicher, noch alle Werthe zuverlässig genug sind, müssen vorläufig allgemeine ähnliche Ordnungen der Werthe genügen. Von einzelnen Werthen lässt sich, nach früher Gesagtem, kein paralleler Gang erwarten; ein im Allgemeinen ähnlicher Gang ist schon auffallend.

Ordnet man die Elemente nach dem Atomvolumen, dann fällt sofort auf, dass die magnetischen: Eisen, Nickel, Kobalt, Mangan und Chrom nahe die gleichen Atomvolumen besitzen, dass $\frac{A}{\Delta}$ nur zwischen 6·5 und 7·7 schwankt. Ferner sind die magnetischen Elemente durchweg nur in hoher Temperatur schmelzbar, die diamagnetischen mehr bei niedereren Schmelzpunkten. Letztere besitzen dazu meistens Atomvolumenwerthe, die weit grösser sind als bei den paramagnetischen. Bei eingehenderer Untersuchung sind keine scharfen Grenzen bemerkbar, ähnlich wie dies auch bei para- und diamagnetischen Körpern, welche mehr allmälig ineinander übergehen, der

Nach der Faraday'schen Ordnung der magnetischen und diamagnetischen Elemente ergibt sich folgende Tabelle:

Fall ist.

	$rac{A}{\Delta}$	t	Δs	$\sqrt[3]{Ts}$	$\sqrt[3]{rac{A}{\Delta} \cdot Ts}$
	/Eisen 7·2	1500°	0.87	6.0	11.5
	Nickel 6.5	1500	0.95	5.8	11.0
	Kobalt 6.7	1600	0.94	6.0	11.3
magnetische	Mangan 6.9	1700	0.94	6.0	11.3
tis	Chrom 7.7	1500	0.75	5.6	11.0
gne	Cer21.8	600	0.30	3.2	9.0
ma	Titan 9·1	1600 (?)	0.69	6.2	13.0
i	Palladium 8.9	1500	0.71	4.6	9.6
	Platin 9 0	1780	0.70	4.2	8.7
,	Osmium 1 8.7	2300	0.70	4.4	8.8
	Wolfram 9.5	1700	0.69	$4 \cdot 1$	8 8
- 1	Iridium 8.6	1950	0.78	4.1	8.5
-	Rhodium 8.5	1800	0.71	4.8	$9 \cdot 9$
1	Uran12.8	1500	0.52	3.7	8.8
1	Arsen14.0	bei 210 flüchtig	0.45	3.4	8.0
ē	Gold	1050	0.62	$4\cdot 2$	9.0
sch	Kupfer 7 · 1	1060	0.85	5.0	9.7
diamagnetische	Silber	950	0.60	4.1	8.8
agr	Blei18.1	330	0.35	$2 \cdot 7$	7 · 1
am	Quecksilber 14.7	—4 0	0.44	2.0	4.9
Ġ.	Kadmium 13 0	500	0.52	$3 \cdot 3$	7.7
1	Zinn 16·4	235	0.40	3.0	7.5
- 1	Zink 9 · 1	430	0 68	4.0	$8 \cdot 2$
- 1					
	Antimon17.9	440	0.33	3.3	8.6
/	Wismuth21.2	275	0.30	$2 \cdot 4$	6.6

Obige Übersicht zeigt, dass sich die Ordnung wesentlich nach den Werthen $\sqrt[3]{\frac{A}{\Delta}}$. Ts richtet oder nach den Producten aus Atomdurchmesser und der dritten Wurzel aus der Schmelztemperatur (vom natürlichen Nullpunkte an gerechnet) mal der specifischen Wärme bei gewöhnlicher Temperatur.

In der ersten Gruppe macht das Cerium, in der zweiten das Kupfer eine wesentliche Ausnahme.

Da die relative Wärme (Δs) in der Richtung obiger Ordnung abnimmt — bei den magnetischen zwischen 0.80 und 0.95,

¹ Zu der ersten Gruppe gehören ferner: Silicium, Beryllium, Aluminium, Kalium, Natrium; zu der zweiten: Tellur, Schwefel, Phosphor, Selen, Jod, Niobium, Tantal.

bei den untersten diamagnetischen zwischen 0.50 und 0.30 schwankend — so könnten ein Theil der Werthe durch Multiplication obigen Ausdruckes noch extremer erhalten werden. Man erhielte für

Eisen $\Delta s \sqrt[3]{\frac{A}{\Delta}}$.	Ts = 10.0
Nickel	10.4
Kobalt	10.6
Mangan	10.6
Zinn	3.0
Antimon	$2 \cdot 8$
Wismuth	1.9

Die Reihe wird aber weder ganz stetig, noch werden die Ausnahmen wesentlich verbessert.

Für den Rotationsmagnetismus erhält man

	Wirkung Wüllner-Pouillet	Herschel	Nobili	Leitung der Wärme und Elektricität	$\sqrt[3]{Ts}$
Kupfer	100	100	100	100	5.0
Zinn	46	46	21	17	3.0
Blei	25	25	17	10	2.7
Zink	13	93	30	36	4.0
Antimon	9	9		5	3.3
Wismuth	2	2		2	$2 \cdot 4$
Silber	stark			120	4.1
Gold	schwach			65	$4 \cdot 2$
Quecksilber zwisch	en				
Antimon und Wisr	nuth 6 (?)			1	$2 \cdot 0$
Eisen	am stärksten			18	6.0

Während man annahm, dass bei gleich dicken Scheiben der Einfluss nahe gleich der specifischen Leitungsfähigkeit der Metalle sei (Wüllner u. A.), zeigt sich der Einfluss wieder entsprechender dem Werthe $\sqrt[3]{Ts}$, wobei Eisen in der That am günstigsten wirken muss.

Bei einigen Elementen gelang die Bestimmung des Verdampfungs- und Siedepunkte, wodurch das Volumengewicht des Dampfes ermittelbar war. Folgende Zusammenstellung gestattet die Übersicht der dabei wesentlichen Werthe.

	Schmelzpunkt		Atom- gew. A	Mole- cular- gew. M	$\frac{M}{A}$	Dio fest flüssig Δ	chte Dampf, Wasser —1	0·069 An H gleich Einheit	Berech- nete Dampf- dichte
Arsen	verflüchtigt sich, ohne zu schmelzen	180	75	350	4	5.5	10.338	5·2×2	= 10.4
Brom	7·3°	45	80	160	2	$2 \cdot 2$	5.528	5.6×1=	= 5.6
Kadmium	500 (355)	860	112	112	1	8.6	3.94	7.8×0.5	= 3.9
Chlor	 75	-33.6	36	71	2	1 • 33	$2 \cdot 45$	2 5×1 =	= 2.5
$Jod\ldots\ldots$	114	180	127	254	2	4.95	8.77	8.8×1=	= 8.8
Phosphor	44	290	31	124	4	1.85	4.28	2·15×2:	= 4.3
Quecksilber	40	360	200	200	1	13.54	6.98 1	4.0×0.5 =	= 7.0
Schwefel	114	440	32	64	2	2.05		— =	
Selen	217	700	79	158	2	$4 \cdot 28$	5.68	5.6×1=	= 5.6
Zink	430	1040	65	65	1	6.86	_	<u> </u>	
Wasserstoff	·		1	2	2		0.069	0·069×1=	= 0.07

Aus der Dichte des Wasserstoffes und den Atomgewichten irgend einer Masse ergibt sich die Dampfdichte derselben, wie die letzten Columnen zeigen, wenn mit einem Werthe u das Product 0.069 A multiplicirt wird. Der Werth von u ist:

$$n=0.5$$
, wenn $A=1$ Moleculargewicht, $n=1.0$, » $A=\frac{1}{2}$ » $n=2.0$, » $A=\frac{1}{4}$ »

Ein ähnlicher Unterschied zeigt sich in den Verhältnissen der Siedetemperaturen zu den Schmelztemperaturen der einzelnen Elemente. Es lassen sich nämlich dieselben durch die Zahlenwerthe

1.2,
$$1.8 = \frac{3}{2}.1.2$$
 und $2.7 = \frac{3}{2}.1.8$

ausdrücken, soweit als jetzt die Werthe bekannt sind, wie folgende Zusammenstellung zeigt.

	Schmelz-	Verhältniss-	Si	edetemperatur
	temperatur $T = t + 273^{\circ}$	zahl f	berechnet $T \times f$	beobachtet über dem natürlichen Nullpunkte
Jod	387°	1.2	464	453
Brom	266	1 • 2	319	318
Chlor	198	1 - 2	240	239

	Schmelz-	Verhältniss-	Siedetemperatur		
	temperatur $T = t + 273^{\circ}$	zahl f	berechnet $T \times f$	beobachtet über dem natürlichen Nullpunkte	
Aluminium	1123	1.8	2021	1970 (über Weissgluth)	
Magnesium	873	1.8	1571	1573	
Indium	449	1.8	808	800 (?) (Rothgluth)	
Antimon	713	1.8	1283	1300 (zwischen 1090 und 1450°)	
Zink	703	1.8	1265	1313	
Kadmium	628	1.8	1130	1133	
Thallium	563	1.8	1013	973	
Selen	510	1.8	923	953	
Schwefel	387	1.8	696	713 .	
Phosphor	317	1.8	571	563	
Bļei	603	2.7	1628	1600 (zwischen 1450 und 1650	
Wismuth	548	2.7	1480	1373	
Zinn	508	2.7	1371^{1}	1700 (1723 —1873)	
Natrium	370	$2 \cdot 7$	999	1070 Rothgluth	
Kalium	335	$2 \cdot 7$	903	998 Rothgluth	
Rubidium	311	2.7	840	933 Rothgluth	
Silber	1240	${1\cdot 8 \brace 2\cdot 7}$	$\frac{2152}{3470}$	Knallgasgebläse	

Nach Olszewski siedet Ozon bei —107°, bildet eine dunkelblaue Flüssigkeit bei —181°4, somit wird für

Ozon	92	1 • 2		165	166
Quecksilber	233	2.7	•	629	633

Theilt man den Unterschied zwischen den Siede- und Schmelztemperaturen durch die Siedetemperaturen und stellt daneben die Werthe von $\frac{A}{\Delta}$ und Δs (Atomvolumen und relative Wärme), dann erhält man folgende Zusammenstellung:

T (S	Siedep.)— T (Schmelzp.)	A	
	T (Siedep.)	Δ	Δs
Jod	0.15	$25 \cdot 7$	0.27
Brom	0.16	26.6	0.26
Chlor	0.17	25.8	0.25

 $^{^1}$ Bei Zinn müsste, wenn sonst die Beobachtung richtig ist, $f=3\cdot 35$ oder nahe $=\frac{5}{4}.2\cdot 8$ werden.

	$\frac{T \text{ (Siedep.)} - T \text{ (Schmelzp.)}}{T \text{ (Siedep.)}}$	$\frac{A}{\Delta}$	Δs
Magnesium	0.44	13.8	0.44
Indium	0.49	15.1	0.42
Antimon	0.46	17.9	0.34
Zink	0.46	$9 \cdot 1$	0.68
Kadmium	0.45	13.0	0.49
Thallium	0.47	17.1	0.39
Selen	0.47	18.0	0.34
Schwefel	0.46	15.6	0.40
Phosphor	0.44	14.0	0.34
Aluminium	0.33 (5)	10.4	0.55
Blei	0.60	18.2	0.36
Wismuth	0.61	21.8	0.30
Natrium	0.69	23 6	0.28
Kalium	0.66	$45 \cdot 6$	0.15
Rubidium	0.62	56.1	0.12 -
Zinn	0.80	$16 \cdot 4$	0.41
Quecksilber	0.63	14.7	0.44

Eine erste Beziehung zeigt diese Zusammenstellung der Reihen sofort. Den niederen Werthen der ersten Reihe der ersten Gruppen stehen hohe Werthe von $\frac{A}{\Delta}$ und niedere von Δs gegenüber. In der zweiten Gruppe wechselt dies Verhältniss, ohne dass es aber in der dritten Gruppe consequent sich fortsetzte; ja hier erfolgt sogar ein Wechsel, wie die zu Zinn und Quecksilber zugehörigen Werthe zeigen.

Stellt man allgemein die bei der Verbindung der Metalle mit Sauerstoff oder Chlor frei werdenden Wärmemengen nach den Versuchen von Dulong, Thomson u. s. w. der Leitungsfähigkeit der Metalle für Wärme oder Elektricität gegenüber, dann findet man für beide Reihen einen umgekehrten Gang, wie folgende Zusammenstellungen zeigen, in welchen je die betreffenden Werthe von Eisen die Einheit bilden.

Metalle	Wärmeentwicklung	Leitungsfähigkeit
Silber	. 0.10	8.3
Kupfer	. 0.60	$6\cdot 2$
Kadmium	. 0.94	1.7

Metalle	Wärmeentwicklung	Leitungsfähigkeit
Eisen	1.00	1.0
Zinn	1.04	1.2
Zink	1:10	1.6

Bei der Verbrennung wird Wärme frei bei

	Sauerstoff	Ch	lor	
	Dulong	Thor	nson	Leitungsvermögen
Zink	1.22	1.10	1.19	19
Zinn	1.04	_	_	15
Eisen	1.00	1.00	1.00	12
Antimon	0.89		_	
Kobalt	0.92	_		
Kupfer	0.60	0.60	0.40	74
Kadmium	_	0.94	1 · 13	20
Blei	. -	0.71	1.01	10
Silber		0.10	0.37	100
Aluminium	-		2.00	32

Bei genauerer Betrachtung findet man, dass je nach den aufgenommenen Sauerstoff- oder Chlormengen die Werthe auszuscheiden sind. Ist dies geschehen, dann zeigen sich im Allgemeinen die Atomgewichtswerthe massgebend, genauer aber die Producte aus den Werthen des Atomdurchmessers und der specifischen Wärme.

Bei der Verbindung der Metalle mit einem Theile Sauerstoff erhält man

Metalle	Wärmemenge	A	$s \sqrt[3]{\frac{\overline{A}}{\Delta}}$
Magnesium	6077	24	0.60
Calcium	3284	40	0.50
Strontium	1495	87	0.23
Eisen	1180 - 1350	56	0.22
Zink	1300	65	0.21
Kupfer	590—604	63	0.18
Zinn	574	118	0.14
Kupfer	590-604	63	0.18
Zinn	574	118	0.14
Blei	250 - 260	207	0.09
Quecksilber	150	200	0.08

Bei Verbindungen mit zwei Sauerstoff ergibt sich:

Metalle	Wärmemenge	A	$s \sqrt[3]{\frac{A}{\Delta}}$
Kohlenstoff	8080	12	0.82
Schwesel	2200-2300	32	0.40
Selen	730	79	0.19

Durch die Einführung von Massstabswerthen und Verhältnissen lassen sich, wie dies vielfach auch in früher angeführten Fällen möglich ist, die Zahlenwerthe der einen Reihe aus der andern mindestens annähernd berechnen. Quadrirt man beispielsweise den zweiten Ausdruck, vervielfacht mit 10800 und setzt eine Constante 400 hinzu, dann berechnen sich die Werthe für

Kohlenstoff	zu	7700	gegenüber	8000
Schwefel	>>	2130	»	2200
Selen	>>	780	*	730

Für die folgenden Verbindungen werden

	Wärmemenge	$s \sqrt[3]{\frac{A}{\Delta}}$
Na ₂ O	. 3290	0.84
K ₂ O	. 1745	0.60
Te ₂ O		0.08
Ag ₂ O	. 27	0.12
P_2O_3	. 5700	0.46
$As_2O_2 \dots \dots$. 1030	0.19
J_2O_5	. 176	0.16
Bi_2O_3	. 96	0.08

Die eingehenderen Untersuchungen dieser Beziehungen, namentlich mit Hilfe von ausgedehnterem Beobachtungsmaterial, dürften zu, auch für die theoretischen Anschauungen, werthvollen Resultaten führen.¹

Wenn für jede Serie der Oxydationsstufen sich die Werthe von $s\sqrt[3]{\frac{A}{\Delta}}$ in andern Verhältnissen unter sich und gegenüber den Werthen der Wärmeentwicklung stellen, dann ähneln die

Ohne die Verbindungswerthe auszuscheiden, sei noch angeführt, wie sich die bei der Verbindung mit Chlor pro 1 g Substanz die Wärmemengen stellen:

hier sich zeigenden Verhältnisse jenen bei den Beziehungen zwischen Siede- und Schmelztemperatur vorkommenden.

Zum Durchpressen der Metalle durch bestimmte Öffnungen war ein Druck — Flüssigkeitsmass — nach Tresca's Versuchen (C. R. 1870) nothwendig, bei

Eisen	.37.6	<i>kg</i> pro	Quadratmillimeter
Kupfer	. 18•9	>>	»
Zink	. 9.0	>>	»
Blei und Zinn zu gleicher	1		
Theilen	. 3.4	*	»
Zinn, rein	. 2.1	>>	»
Blei	. 1.8	>>	»

welche Werthe der absoluten oder Zugfestigkeit entsprechen.

Stellt man die Metalle nach den Quotienten aus Schmelztemperaturen und Dichtigkeiten zusammen, dann folgen sich die Metalle in der gleichen Ordnung, in welcher sich (nach Prechtl) an den Metallen die Formveränderungen am leichtesten oder vollkommensten durch Hämmern vollziehen lassen.

$rac{t}{\Delta}$	$rac{t}{\Delta}$
Blei28.8	Silber 95.0
Zinn 31 · 2	Kupfer 117.9
Gold 57.0	Platin $\begin{cases} 79.1 \text{ bei } t = 1700^{\circ} \\ 116.3 \end{cases}$ 2500
Zink 58.8	Eisen 205·1

Bei genauerer Betrachtung aller im Vorhergehenden zusammengestellten Beziehungen treten stets zwei Kräfte hervor:

-	Wärmemenge	s. $\sqrt[3]{\frac{A}{\Delta}}$
Bei Kalium	. 2655	0.60
» Phosphor	. 3422	0.50
» Eisen	. 1745	0.22
» Zink	. 1529	0.21
» Arsen	. 994	0.19
» Kupfer	. 961	0.18
» Zinn		0.14

Diese Reihen können nur im Allgemeinen stimmen.

die Cohäsion und die Wärme, Sie erscheinen als die wirkenden, die Constitution der Körper bedingenden Kräfte. Die Cohäsion wirkt vergleichbar der Attraction; sie wirken beide nach den gleichen Gesetzen und sind wahrscheinlich nur gemeinschaftlicher Natur. Scheinbare Unterschiede entstehen durch die Verschiedenheit der Entfernungen der sich anziehenden Massenmittelpunkten und deren Oberflächen namentlich aber durch die Wirkung der Wärme, welche bei der Cohäsion eine directe, bei der Attraction höchstens eine indirecte ist. Höhere Temperaturen vermindern die Festigkeit der Körper und führen einen flüssigen oder gasigen Aggregationszustand herbei unter Vermehrung des Volumens; Abnahme der Temperatur verdichtet die Massen. Bei niederen Temperaturen bleibt die chemische Natur der Verbindungen durchwegs stabil; höhere Temperaturen ändern dieselbe, nachdem die Anziehung der Atome und Moleküle unter sich so weit vermindert wurde, dass neue Anlagerungen entstehen konnten. Wie zugleich die physikalischen Eigenschaften sich bei Temperaturveränderungen verändern, zeigen neben zahlreichen Körpern insbesondere auffallend Eisen und seine Verbindungen (Weich-, Hartmachen, Ausglühen, Härten, Überführung von weissem Gusseisen in graues, u. s. w.).

Da jedes Atom das andere anzieht, so müssen die Lagerungen zu den kleinsten gleichartigen Massentheilchen, welche durch gegenseitige Anziehung die Körper bilden, derartig gedacht werden, dass nicht einzelne Atome aus einem Molekül in ein anderes gezogen werden können, d. h. jedes Molekül muss bis zu einer gewissen Grenze hin im Gleichgewichtszustande sein und bleiben, sei derselbe stabil wie bei den meisten Verbindungen, sei er labil wie bei manchen Verbindungen, sei er schwierig oder weniger schwierig, sei er erst nach langer Zeit oder momentan aufzuheben, wie letzteres bei den explosiven Verbindungen oder selbst bei solchen Gemischen der Fall ist. Es muss die Anziehung der Atome in jedem Moleküle grösser sein, als die Anziehung zweier benachbarten Atome in den aneinanderlagernden Molekülen, weil andernfalls dauernde Verbindungen nicht gedacht werden können. Werden durch äussere Einwirkungen diese Verhältnisse gestört, dann treten Umlagerungen ein.

Die Atome, wie die Moleküle oder beide zusammen können in Bewegung gedacht werden; da aber in diesen Fällen die Vorstellungen über dauernde Verbindungen, ja selbst über die Gleichförmigkeit der Bildung solcher aus grossen Massen, Schwierigkeiten bereiten, so wird es zweckmässig sein, die Bewegungen mindestens relativ sehr beschränkt zu denken und sich die Moleküle als äusserst kleine Massen vorzustellen, welche nur in besonderen Fällen mit lebhafter Beweglichkeit ausgestattet sind.

Das Molekül lässt die Vorstellung zu, dass es aus Kern und Hüllen bestehe und diese beide — Kern und Hüllen — wieder in Atome und Atome höherer Ordnung zerfallen. Es zieht der Kern (entsprechend den Planeten die Meere und Atmosphären) die erste Hülle, Kern und Hülle die zweite Hülle u. s.w. an, wobei bei zwei verschiedenen Elementen der Kern mit einer Hülle, bei drei und mehr Elementen der Kern von zwei, drei oder mehr Hüllen schalenförmig oder auch aus symmetrisch gelagerten, im Gleichgewichte befindlichen Atomgruppen gebildeten Einhüllungsmassen umgeben gedacht werden muss.

Bildet ein Atom oder Molekül eines Stoffes mit einem zweiten einen Kern mit einer Hülle, dann darf man sich ein solches Molekül im einfachsten Falle kugelförmig und im Gleichgewichte befindlich denken. Zieht nun ein zweites, drittes u. s. w. Molekül das erste und alle sich gegenseitig an, und zieht jeder Kern seine Hülle stärker an, als die einzelnen Moleküle auf die Hüllen der anderen zu wirken vermögen, dann muss der Körper so lange seine Beschaffenheit unverändert beibehalten, als nicht weitere Kräfte zur Wirkung gelangen, welche die bestehenden Gleichgewichtszustände aufzuheben vermögen. Diese Kräfte sind im gegebenen Falle die Wärmewirkungen. Sie entfernen die Hüllen von den Anziehungscentren der Kerne und nähern die Hüllen der einzelnen Moleküle sich gegenseitig, wodurch bei zureichender Temperaturerhöhung unter Zuführung neuer Stoffe oder auch durch Umlagerung der vorhandenen, neue chemische Verbindungen oder abweichende physikalische Eigenschaften erzeugt werden können.

Nicht aber allein bei der kugelförmigen, sondern auch bei der ellipsoidischen Anlagerung ist der Gleichgewichtszustand denkbar. Die Ellipsoide werden je nach der Bildung der Moleküle solche mit sich rechtwinklig oder schiefwinklig schneidenden Axen sein, da je nach der Anzahl und der Grösse der im Molekül enthaltenen Atome und je nach den Kräften, mit welchen sie aufeinander wirken, die Anlagerung eine andere sein muss. Bilden beispielsweise zwei Atome einen Kern, dann wird in den meisten Fällen die grosse Axe durch die Centren beider Atome gehen und es lagern sich um den in der Richtung der Hauptaxe liegenden Kern die übrigen zum Molekül gehörigen Atome. Wie die Axen verschiedene Neigungen gegen einander haben können, so sind auch deren Längenverhältnisse wechselnd, woraus eine ungemeine Mannigfaltigkeit der Formen der Moleküle, wie auch die aus denselben zusammengesetzten Körper und dies namentlich bei den Krystallen, resultiren.

Das reguläre, gleichseitige Krystallsystem mit einander sich rechtwinklig schneidenden Axen entspricht der Kugel; aus Kugeln bauen sich Würfel, Oktaëder, Tetraëder u. dgl. auf.

Das quadratische, zwei- und einaxige System mit drei rechtwinklig sich schneidenden Axen, wovon ein Paar gleich lang ist, lässt sich aufgebaut denken aus Ellipsoiden mit rechtwinklig sich schneidenden Hauptaxen, wovon die eine länger ist als die beiden anderen gleich langen. Beispiele: Quadratoktaëder, quadratische Säulen, Prismen u. s. w.

Das rhombische System würde aus drei ungleichen Axen enthaltenden Ellipsoiden zu rhombischen Prismen, rhombischen Pyramiden u. dergl. aufgebaut.

Das klinorhombische System mit drei ungleichen Axen, wovon ein Paar sich nicht rechtwinklig schneidet, würde aus

Fig. 1.

entsprechenden Ellipsoiden gebildet, welche Rhomboëder, Prismen mit rhombischer Basis u. s. w. erzeugen, während das klinorhombische System Ellipsoide mit ungleich langen und allen sich untereinander schiefwinklig schneidenden Axen gebildet würde.

Für das hexagonale System liessen sich entsprechende Ellipsoide mit einer Hauptaxe und drei dieselbe rechtwinklig schneidenden, gleichlangen und unter

sich unter 60° geneigten Axen denken. Man könnte indessen sich den sechseckigen Querschnitt auch aus drei rhombischen Stücken zusammengesetzt denken. (Fig. 1.)

Vorausgesetzt wäre in allen diesen Fällen, dass sich die Krystalle aus Ellipsoiden (respective Kugeln) und nicht aus dem ganzen Krystalle ähnlichen Gebilden zusammengesetzt annehmen lassen. Da im eckigen Gebilde der Gleichgewichtszustand nur schwierig oder eigentlich gar nicht denkbar ist, so muss der ellipsoidische (respective kugelförmige) bei den Molekülen vorausgesetzt werden.

Über die Vertheilung der Atome in Molekülen lassen sich je nach den Verhältnissen sehr abweichende Vorstellungen bilden.

Legt man durch die Eckpunkte des Van t'Hoff'schen Tetraëders¹ eine Kugel- oder Ellipsoidenoberfläche, deren Mittelpunkt gleichweit von den Tetraëdereckpunkten absteht, dann lässt sich die ganze Theorie auf die Kugel oder noch besser auf das Ellipsoid übertragen und zwar mit beträchtlicher Erweiterung der für die Entwickelung der Hypothesen nothwendigen Freiheit. Des Verfassers Anschauungen näher tritt in der allerneuesten Zeit Dr. Alfred Werner (*Beiträge zur Theorie der Affinität und Valenz«, in Vierteljahrsschr. der naturf. Gesell. Zürich, Bd. XXXVI, 1891) mit seiner Theorie der Valenzorte (vielleicht besser Valenzflächen genannt). Mit einem Schritte weiter würden sich Werner's Anschauungen fast vollständig mit des Verfassers seit vielen Jahren gehegten, auch schriftlich niedergelegten Hypothesen decken.

Hier näher auf diese Hypothese einzutreten liegt aus mehrfachen Gründen ferne; einige Andeutungen mögen hier genügen.

Da bei ellipsoidischer Molecularform die Axen in Bezug auf Lagen und Längen innerhalb sehr weiter Grenzen beliebig variiren können und die Kern- und Hüllenanlagerungen compact oder in beliebigen, allerdings immer anziehungssymmetrischen Lagen möglich sind — einfach, doppelt, vierfach (3 Punkte auf der Oberfläche, einer im Centrum, oder vier Punkte auf der

¹ (Oder durch die Ecken eines Oktaëders, Würfels u. s. w. oder durch die Kantenmitten derselben u. s. f.).

Oberfläche), fünffach (vier Punkte auf der Oberfläche, einer im Centrum), sechsfach (alle auf der Oberfläche oder fünf darauf, einer im Centrum) u. s. w., so erklären sich auf diesem Wege nicht nur, wie oben bemerkt, die mannigfaltigsten Gruppirungen der Atome zu organischen und unorganischen (Krystall-) Gebilden, sondern es erklären sich auch die Krystallzwillinge, die Substitution — bald leichter, bald schwieriger und selbst ungleich schwer an einzelnen Punkten eines Moleküles, da die Anziehungsenergie nicht in allen Punkten die gleiche sein muss, nicht einmal, wenigstens in den meisten Fällen, sein kann —; es erklären sich Isomerie, Dimorphismus u. s. w.

Um die Vorstellbarkeit der Bildung von isomeren oder physikalisch sich ähnlich verhaltenden Verbindungen sich klar zu machen, wie dies etwa die links- und rechtsdrehende Wein-

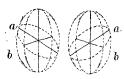


Fig. 2.

steinsäure oder ähnliche Verbindungen erfordern, hat man sich zwei Ellipsoide zu denken, deren drei sich nicht rechtwinklig schneidenden Axen entsprechend einem Spiegelbilde in beiden symmetrisch geneigt und wobei die Anlagerungen derartig sind, dass keine Drehung in parallele Lagen

möglich wird. Da sich auf dem gleichen Wege der Isomorphismus erklärt, so ist, was übrigens schon aus früher Gesagtem hervorgeht, nicht jeder scheinbar chemisch gleich zusammengesetzte Körper isomer zu dem entsprechenden, sondern es entscheiden darüber noch die physikalischen Erscheinungen, namentlich die specifische Wärme, die Schmelz- und Siedetemperaturen u. dergl.

Leicht sich umlagernde Verbindungen, solche mit labilen Gleichgewichtszuständen lassen sich vergleichen mit Himmelskörpern, deren Meere schwerer wären, als die Kerne. Ein Quecksilbermeer auf der Erde würde rasch einen gewaltigen Umsturz des ganzen Planeten hervorgerufen haben.

Bei kugelförmiger Anlagerung hat jedes Molekül freie Bewegung gegenüber den benachbarten; bei ellipsoidischen jedoch nicht mehr, namentlich nicht bei drei ungleich langen und sich nicht rechtwinklig schneidenden Axen. Hierbei müssen die Anlagerungen in bestimmten, von der gegenseitigen Anziehung der einzelnen Moleküle abhängigen Richtungen stattfinden. Unter gewissen Umständen kann Kehrung eintreten, die aber nicht stabil sein kann, wesshalb derartige Isomerien nicht beständig sind.

Auf diesem Wege vermag man zu Anschauungen zu gelangen, welchen körperlich geschlossene, der gegenseitigen Anziehung unterworfenen Atome entsprechende Moleküle zur Grundlage dienen; man kann auf jede Ausbreitung der Atome in Ebenen behufs der Bildung von Molekülen, also auf unnatürliche, im Grossen sich nirgends zeigenden Annahmen und Gliederungsformen verzichten, welche in jedem Augenblicke von dem benachbarten Moleküle infolge gegenseitiger Anziehung derartig gestört werden müssten, dass das Bestehen grösserer Körpermassen undenkbar wäre.

Wie die Tangential- oder Centrifugalkraft der Centrifugalkraft entgegen wirken muss, um die Weltkörper in ihren Bahnen und die Sonnen- und Sternsysteme zu erhalten, so muss der Cohäsion — der Schwerkraft der kleinsten Theilchen — eine Kraft entgegenwirken. Diese Kraft ist die Wärme. Beide Kräfte - Anziehung und Wärme - im Gleichgewichtszustand bedingen die Erhaltung der Massen. Mit zunehmender Wärme wird die Anziehung mehr und mehr überwunden — sei dies durch Erhöhung der Schwingungsgeschwindigkeiten und Ausschlägen, sei es durch Neutralisiren der inneren Anziehung der Körpertheilchen - es werden die Kerne, respective die Molekülmittelpunkte (oder besser Anziehungscentren) mehr und mehr voneinander entfernt. Je nach der Anordnung der Moleküle geschieht die Distanzänderung der Anziehungscentren gleichmässig nach allen Richtungen, oder je nach den Anlagerungs- und Axenverhältnissen der Ellipsoiden in ungleicher Weise nach den verschiedenen Richtungen, wie dies beispielsweise bei der Erwärmung der Krystalle vorkommt, welche sich oft recht ungleich nach den verschiedenen Richtungen ausdehnen und zerfallen, welche je nach der Richtung des Angriffes der Kraft verschiedene Festigkeit, verschiedene Elasticität u. s. w. zeigen. Mit zunehmender Erwärmung lockert sich das Gefüge der Körper; Festigkeit, Leitungsfähigkeit u. s. w., überhaupt alle physikalischen und chemischen Eigenschaften der Körper

müssen Veränderungen entgegengehen oder erleiden. Durch die Wärme werden die Atomvolumina vergrössert, die Kernmittelpunkte als Anziehungscentren von einander entfernt; es muss das Zusammenhalten, die Festigkeit vermindert werden, wie es unsere oben aufgeführten Formeln verlangen. Die durchgehende Zunahme der specifischen Wärme bei der Ausdehnung der Körper, d. h. bei der Annäherung der Temperatur an die Schmelztemperatur oder nach Änderung des Aggregatzustandes erklärt sich aus der vermehrten Arbeit, welche nothwendig ist, um die einzelnen Moleküle mehr und mehr zu entfernen. Bei dem absoluten Nullpunkte müsste die specifische Wärme sehr gering, vielleicht nahe Null sein. Wenn Ausnahmen vorkommen, wie bei Jodsilber, das sich (nach Fizeau) zwischen -10° bis +70°, auf welche Temperaturgrenzen es untersucht ist, mit wachsender Temperatur statt auszudehnen zusammenzieht, bei sinkender Temperatur sich wieder ausdehnt, obschon es erst bei 400° schmilzt, so muss dies auf einem ähnlichen Vorgange beruhen, welcher veranlasst, dass das Wasser bei + 4° am dichtesten ist, oder bei Schwefel, der bei 114° flüssiger ist, als bei 200° oder bei Zink, dessen Dehnbarkeit über 150° abnimmt und das dann bei 200° spröde wird.

Stehen sich bei einander umkreisenden Körpern Centrifugal- und Tangentialkraft, bei der Körperwelt im Innern Anziehung und Wärme gegenüber, dann müssen die Gesetze der Wärmeausdehnung zu derjenigen der Centrifugalkraft in Beziehung stehen; es muss sich das Schema aufstellen lassen:

Vollkommener Gleichgewichtszustand wird mit Wahrscheinlichkeit nur im flüssigen Zustande statthaben, da im festen die Cohäsion, im gasförmigen Zustande die Wärme das Übergewicht haben muss. Setzt man in aller Einfachheit

Anziehung
$$A = \frac{M.m}{R^2}$$
|| Centrifugalkraft $C = \frac{m.v^2}{R}$

Festigkeit
$$K = 100 \Delta \left(\frac{\alpha}{\epsilon}\right)^2$$

||
Wärmewirkung $W = \frac{\Delta \cdot v_1^2}{r} = \frac{\Delta \cdot v_1^2}{\frac{\epsilon}{\alpha}} = \Delta \cdot v_1^2 \cdot \frac{\alpha}{\epsilon}$

wenn man in beiden Fällen einfach die Massen proportional der Dichte setzt, wie die Festigkeit verlangt, dann wird

$$v_1^2 = \frac{W}{\Delta \cdot \frac{\alpha}{\varepsilon}} = \frac{K}{\Delta \cdot \frac{\alpha}{\varepsilon}}$$

Nimmt man die Werthe von K, Δ und $\frac{\varepsilon}{\alpha}$ an, dann erhält man für:

<i>K</i>	Δ	<u>ε</u> α	$v_1^2 = \frac{K}{\Delta \frac{\alpha}{\epsilon}}$	und $v_1^2 = \sqrt{3 ls}$
Eisen42	7.8	4 · 1	23.1	23.4
Kupfer 32	8.8	$5 \cdot 2$	18.8	17.1
Platin 35	21.5	7.6	12.4	12.9
Silber	. 10 5	6.9	14.5	12 7
Gold 20	19.3	10.0	10.3	10.1
Blei 2.7	11.4	20.2	5.0	5.4
Zinn 4·0	7.3	11.4	$6 \cdot 2$	6.2
Antimon 0.7	6.7	$22 \cdot 7$	2.3	8 · 1
Wismuth 1.0	$9 \cdot 8$	25.9	3.0	$4 \cdot 9$

somit wieder eine einfache Beziehung, welche auf die zum Schmelzen der Körper nothwendige Wärme hindeutet.

Da K und $\frac{\varepsilon}{\alpha}$ sich in anderer Weise ausdrücken lassen, so liesse sich eine derartige Untersuchung der Beziehungen zwischen Cohäsion und Wärme noch weiter ausdehnen, was indessen für jetzt noch wenig Interesse bieten würde.

Nachtrag.

Zu Seite 770.

Über die Compression der Stoffe liegen nur wenige Versuche vor. Die in der Technik angenommenen Werthe können

durchgängig nur als Nothbehelf dienen. Für Kupfer, Messing und Glas fand Regnault die linearen Compressionscoëfficienten

Setzt man für die Werthe der Coëfficienten für die Wärmeausdehnung bei diesen drei Körpern:

und berechnet entsprechend wie bei der Zugfestigkeit — proportional der Dichte und im umgekehrten Verhältnisse der Quadrate der Verhältnisse aus Belastungs- und Wärmeausdehnung — dann ergeben sich die Festigkeitswerthe:

bei Kupfer =
$$17 \cdot 4$$
 kg pro Quadratmillimeter
» Messing = $23 \cdot 5$ » »
» Glas = $0 \cdot 73$ » »

Die Druckfestigkeit wird bei Kupfer zu etwa 40, bei Messing zu weniger als 10 angenommen. Mangel an Beobachtungsmaterial nöthigt dazu nur das Resultat anzugeben. Theoretische Gründe sprechen schon dafür, dass für Druck nicht direct die gleichen Formeln, wie sie für Zug anwendbar sind, gelten können, wenn es sich darum handelt dieselben bis zu den Bruchgrenzen anzuwenden.

Stellt man die Compressionscoëfficienten (ϵ_1) pro 1 Atmosphärendruck, den Wärmeausdehnungscoëfficienten (α) pro 1° C., die Dichtigkeiten (Δ) , die Atomvolumina $\frac{A}{\Delta}$ und das Verhältniss von $\frac{\alpha}{\epsilon_1}$ zusammen, dann erhält man für einige Flüssigkeiten folgende Übersichtstabelle.

	€1	α	Δ	$\frac{A}{\Delta}$	$\frac{\alpha}{\epsilon_1}$
Chloroform	0.00000295 bei 0° 0.00006250 » 8.5	0·0001812 0·0011071	13.6 1.5252	14·7 15·7	0.2
Schwefelkohlen- stoff	0.000087 » 15.6	0.0011398	1.28	20.0	13 1

	ϵ_1		å	$_{ar{J}}oldsymbol{\Delta}$	$\frac{A}{\Delta}$	$\frac{\alpha}{\epsilon_1}$
Wasser	0.0000503	bei 0°	0.0000576	1.00	6.0	1.121
Terpentinöl	0.0000730	» 10	0.0008474	0.872	6.0	11.7
Amylalkohol	0.000082	» 13·8	0.0009720	0.8248	6.0	11.8
Methylalkohol .	0.000104	» 14·7	0.0011342	∫0.8142	6.6	12.9
Wiemylarkonor.	0.0000913	» 0	0 0011012	(0.796	0 0	
Aceton	0.0001100	» 14	0.0013481	0.8144	7.1	12.2
Äthylalkohol	0.0001010	» 14	0.0009720	0.8095	6.3	11.3
		» · 0	0 0000.20	0 0000	0 0	
Äthyläther	0.0001110	» O	0.0014803	0.7376	7.5	13.3

Diese Zusammenstellung zeigt für das Verhältniss der Ausdehnung durch Wärme zur Compression bei dem Drucke von einer Atmosphäre, Beziehungen zu der Dichtigkeit der Körper oder auch zu deren Atomvolumen. Ohne weit eingehendere Versuche, auch bei weit höherem Drucke, lohnt sich eine weitere Verfolgung der Beziehungen dieser Eigenschaften nicht, und um so weniger als der Druck einer Atmosphäre sehr gering ist, gegenüber den bei den Zugversuchen erhaltenen Belastungen auf die gleiche Querschnittseinheit, so dass nicht auf die angeführten Werthe hin an die Beziehungen bei den Zugversuchen angeschlossen werden kann. Bei hundertfach grösserem Drucke würden die Coëfficienten sehr abweichende Verhältnisse für die gleichen, noch mehr aber für die verschiedenartigen Körper ergeben.

Da die Schallgeschwindigkeit in Flüssigkeiten Beziehungen zu den Dichtigkeiten zeigen, so äussern sich auch Beziehungen zu dem Verhältniss der Ausdehnung durch Wärme und der Compression.

Beispielsweise ergibt sich für

$\frac{\alpha}{\varepsilon_1}$	Δ	Schallgeschwindig- keit in Metern pro Secunde
Quecksilber61.4	13.5	1483 oder 1.02
Wasser 9.9 (?)	1.0	1453 1.00
Terpentinöl 11.7	0.87	1371 0.96
Alkohol 12.0	0.75	1157 0.81
Äther	0.71	1093 0.76

 $^{^1}$ Setzt man für Wasser den mittleren Ausdehnungscoöfficienten zwischen +4° und +100° = 0 0004951, dann wird $\frac{\alpha}{\epsilon_*}=9\cdot9\cdot$

Bei den festen Körpern besteht eine gewisse Beziehung zu dem Verhältniss der Ausdehnung durch Belastung und durch Wärme, wobei die höheren Werthe (Blei 18—21, Zinn 11—14 u. s. w.) einer geringeren, die niedereren Werthe (Kupfer 4·3 bis 5·7, Eisen 3·3—4·7 u. s. w.) einer grösseren Schallgeschwindigkeit entsprechen. Wie bei den Metallen die Festigkeit, so scheint bei den Flüssigkeiten der Widerstand gegen Druck einen wichtigen Einfluss zu besitzen, der bei

Quecksilber0.00000295	,
Wasser0.0000503	
Terpentinöl 0 · 0000730	
Alkohol	
Äther0.000111	

ist.

Zu Seite 769.

Berechnet man nach der Formel:

$$\frac{\varepsilon}{\alpha} = 7 \sqrt[3]{\left(\frac{A}{\Delta}\right)^2 \cdot \frac{1}{T_S}}$$
 und $K_t = 100 \Delta \left(\frac{\alpha}{\varepsilon}\right)^2$

die Werthe von $\frac{\epsilon}{\alpha}$ und K, wie dies gelegentlich einer Untersuchung nothwendig wurde, dann erhält man für:

<u>e</u> 0.	K_t	<u>ε</u> α	K_t
Aluminium 5 · 2	$9 \cdot 1$	Chlor18.5	0.4
Magnesium 6.5	4.1	Jod21.8	1.0
Zink 7.6	12.0	Brom22.3	0.6
Schwefel10.2	2.0	Natrium	0.7
Phosphor10.5	1.9	Zinn15·1	$3 \cdot 2$
Indium	5.3	Blei	3.5
Kadmium11.8	$6 \cdot 2$	Quecksilber21.6	2.6
Selen	1.6	Wismuth	1.9
Thallium	4.0	Kalium23.5	0.2
Antimon19·1	1 • 8	Rubidium35.5	0.1

und für die stark magnetischen Elemente

Chrom $\dots \frac{\varepsilon}{\alpha}$	= 4.62	$K_t = 32$
Eisen	4.34	42
Mangan	4.20	46
Nickel	4.20	51
Kobalt	4.13	52

Vergleicht man diese Werthe, so weit als dies möglich, mit früher angeführten, oder berücksichtigt man die bestehenden Eigenschaften, dann findet man die Werthe durchwegs innerhalb der Grenzen der Wahrscheinlichkeit oder nahe den beobachteten Werthen.

Mit der einfacheren Formel

$$K_5 = \left(\frac{\Delta}{A}\right)^2 \cdot \frac{As.T}{5}$$

erhält man bei

$rac{A}{\Delta}$	As	T	K_5
Beryll 4 · 33	5.30	1170°	66
Eisen 7 · 17	6.36	1870	45
Iridium 8.59	6.16	2230	36
Silber	6.14	1230	15
Gallium 11.7	5 53	300	2.4
Schwefel15.7	6.00	387	1.9
Aluminium10.6	5.79	1000	10.3
Phosphor 17.5	5.80	317	1.6
Blei18.1	6.47	603	$2\cdot 4$
Wismuth	$6 \cdot 42$	533	1.5
Natrium	6.75	369	0.97
Kalium 45 · 4	6.63	335	0.24

u. s. w.

Verbindet man damit die Formel:

$$\frac{\varepsilon}{\alpha} = 22\sqrt{\frac{\Delta}{As^3} \cdot \Delta s^3}$$

und führt in gleicher Weise, wie oben (S. 769), diese Werthe in die Formel:

$$K_4 = 100 \Delta \left(\frac{\alpha}{\epsilon}\right)^2$$

ein, dann erhält man gleichfalls

$$As.\Delta s.\sqrt[3]{\frac{A}{\Delta}}=\sqrt[3]{T\Delta s.}$$

Nach der vorstehenden Formel:

$$\frac{\varepsilon}{\alpha} = 22\sqrt{\frac{\Delta}{\overline{As^3}.\overline{As^3}}}$$

wird für

<u>ε</u> α	berechnet	$\frac{\varepsilon}{\alpha}$ beobachtet (im Mittel)
Eisen	4.6	4.2
Platin	3.7	$6\cdot 2$
Gold	12.0	10.0
Silber	$9 \cdot 2$	7.0
Blei	20.8	19.6
Antimon	18.3	22.0
Kupfer	5.5	5.6 u. s. w.,

somit schon ordentlich stimmende Werthe, selbst wenn, wie bei der Berechnung der letzten Werthe As = Constant gesetzt wurde.

Die letztere Formel und selbst unter der Voraussetzung, dass $\overline{As^3}$ eine constante Zahl sei, genügt noch innerhalb weiterer Grenzen als Annäherung.

Wie schon Person zeigte, ist die latente Schmelzwärme der Metalle wesentlich abhängig von dem Elasticitätscoëfficienten. Stellt man diejenigen Elemente zusammen, für welche die latente Schmelzwärme bekannt ist, daneben die beobachteten und berechneten Werthe von $\frac{\epsilon}{\alpha}$ und von ϵ , wenn man die rechte Seite der Gleichung

$$\frac{\varepsilon}{\alpha} = 22 \sqrt{\frac{\Delta}{\overline{As^3} \cdot \overline{As^3}}}$$

mit α multiplicirt und dazu noch die Werthe $\left(\frac{A}{\Delta}\right)^{\frac{2}{3}}$ und $\sqrt[3]{Ts}$, dann ergibt sich folgende Übersicht:

	Latente	ε	€ '				
	Schmelz-	α	α net beobachtet	ε	ε	$(A)^{\frac{2}{3}}$	
	wärme	berecht	net beobachtet	berechnet	beobachtet	$(\overline{\Delta})^{3}$	$\sqrt[3]{T}$ s
Palladium	36 3	7.9	4.20-11.23	0.000085	0.000094	4.33	4.6
Zink	28.1	7.0	$3 \cdot 33 - 5 \cdot 02$	0.000207	0.000150	4.37	4.0
Platin	27.2	3.7	6.67 - 8.58	0.000033	0.000056	4.37	4.0
Silber	21.1	$9 \cdot 2$	$6 \cdot 55 - 7 \cdot 04$	0.000178	0.000145	4.71	$4 \cdot 1$
Gallium	19.1	11.0	· · · <u>-</u>			5.15	2.9
Brom	16.1	18.2				8.94	$2 \cdot 9$
Kadmium	13.7	12.5	5.83-12.83	0.000360	0.000250	5.52	3.3

	Latente						
	Schmelz-	α	α net beobachtet	ε	ε	$(A)^2$	
	wärme	berechn	et beobachtet	berechnet	beobachtet	$(\overline{\Delta})^3$	$\sqrt[3]{Ts}$
Zinn	$\begin{cases} 13 \cdot 6 \\ 14 \cdot 3 \end{cases}$	14.7	10.51-13.92	0.000341	0.000270	6.40	3.0
Wismuth	12.6	26.2	22.52-33.42	0.000340	0.000354	7.67	$2 \cdot 4$
Jod	. 11.7	22.0			_	8.70	2.8
Schwefel	9.4	16.5		0.000116		$6 \cdot 25$	4.3
Blei	5.5	20.8	17.97-19.79	0.000609	0.000560	6.92	$2 \cdot 7$
Phosphor	. 4.8	12.7		_		6.76	$3 \cdot 9$
Quecksilber	. 2.8	17.8		0.001068		6.00	$1 \cdot 2$

Diese Zahlenreihen bestätigen nicht nur die Zulässigkeit ähnlicher Formeln wie die soeben angewandte; sie bestätigen auch, dass die ganze Reihe der angeführten latenten Schmelzwärmewerthe in naher Beziehung zu den Werthen $\left(\frac{A}{\Delta}\right)^{\frac{2}{3}}$ und dann zu $\sqrt[3]{Ts}$ steht. Die Aufstellung einer empirischen, sich an diese Werthe anlehnende Formel mag unterbleiben.

Tabellen¹ der Constanten der chemischen Elemente.

Es bezeichnen

A die Atomgewichte,

 Δ die Dichtigkeiten — Wasser = 1,

s die specifische Wärme bei 15-20°,

 $\frac{A}{\Lambda}$ die Atomvolumen,

As die Atomwärmen,

Δs die relative Wärme,

t die Schmelztemperaturen,

K die Zugfestigkeit in Kilogrammen pro Quadratmillimeter,

- e der Elasticitätscoëfficient pro Kilogramm und Quadratmillimeter,
- α der Ausdehnungscoëfficient durch Wärme pro 1° C. zwischen 0° und 100°.

¹ Diese Tabellen sind zum Vergleiche der im Texte benutzten Werthe angehangen. (Der Verf.)

Tabelle

				Tabelle
	A			S
Elemente	Δ	A	Δ	be i 15—20°
	/ 0 - 10		2 • 2	(0.1700 Holzkohle
Kohlenstoff	3.43	12.0	_	0.1700 Graphit
•	(5.45		3.5	(0.1200 Diamant
Dan	(4.22	11.0	2.54	0.2350
Bor	4.33	11 0	2.61	0 2000
		9.1	1.64	0.5820
Beryllium	5.55		2.10	0 0000
Nickel	6.52	58.2	8.8	0.1056
Kobalt	6.68	58.8	8.8	0.1067
Mangan	6.85	$55 \cdot 0$	8.0	0.1200
Kupfer	7.11	63.3	8.9	0.0959
Eisen	7.17	56.0	$7 \cdot 8$	0.1115
Chrom	7.69	$52 \cdot 3$	6.8	0.1100
Rhodium	8.53	104.1	$12 \cdot 2$	0.0580
Iridium	8.62	193.0	22.4	0.0350
Ruthenium	8.66	104.0	12.0	0.0611
Osmium	8.71	195.0	$22 \cdot 4$	0.0312
Palladium	$8 \cdot 87$	106.5	12.0	0.0590
Platin	9.01	194 6	21.6	0.0325
Zink	9.07	65.3	7.2	0.0940
Titan	9.08	48.1	$5 \cdot 3$	0.1300
Vanadium	$9 \cdot 25$	51.3	5.5	0.1250 (?) berechnet
Wolfram	9.51	184.0	$19 \cdot 1$	0.0360
Gold	10 09	196.7	19.5	0.0320
Silber	$10 \cdot 26$	107.9	10.5	0.0570 (0.0604 Nar.)
Aluminium	10.43	27.1	2.6	0.2180
Molybdän	11.16	96.0	8.6	0.0720
Silicium	11.32	28.2	$2 \cdot 49$	0.1900
Lithium	11.86	7.0	0.59	0.9408
Uran	12.83	240.0	18.7	0.0277
Kadmium	13.02	112.0	8.6	0.0550
A	(13 · 16	75.0	∫4·7	0.0750
Arsen	15.95	75 0	₹5.7	0 0100
Germanium	13.21	72.5	5.46	0.0750 (?) berechnet
Gallium	13.25	70.0	5.96	0.0790
Magnesium	13.80	24.0	1.74	0.2499
Quecksilber	14.71	200.0	13.59	0.0333
Niobium	14.92	94.0	6.3	0.0670 (?) berechnet
Indium	15.33	113.5	7.4	0.0569

I.

1.				
	As	$\Delta_{\mathcal{S}}$	t	K in Kilogrammen pro Quadratmillimeter
	Л		V	pro guadrammmeter
c	2.04	0.37	Nicht geschmolzen;	In Krystallen sehr fest
·····)	1.44	0.60	sehr hoch	in Krystanen sem lest
		(0.8=		
Во	2.58	\ 0 65 \ 0.61	Sehr hoch	In Krystallen sehr fest
	-	(0.95		
Be	2.30	$\left\{ \begin{smallmatrix} 0 & 33 \\ 1 \cdot 22 \end{smallmatrix} \right.$	208 (?)	
				Fester als Fe im Verhält-
Ni	6.15	0.95	1500	niss 9:7, Wagner
Со	6.23	0.94	1600	Zäher als Fe. Wagner
Mn	6.66	0.96	1700	
Си	6.08	0.85	1060	25 16—30 (20—36)
Fe	6.24	0.87	1500	40 30—50
Cr	5.75	0.75	1500	
Rh	6.04	0.71	1800	• •
Ir	6.76	0.78	1950	
Ru	6.35	0.73	1800	
Os	6.08	0.70	2300	
Pd	6.29	0.71	1500	27
Pt	6.30	0.70	1780	30 24-40 (25-36)
$Zn \ldots \ldots$	6.14	0.68	430	6 5-16
Ti	6.25	0.69	1600 (?)	• •
Va	6.41	0.69	Nicht geschmolzen	l '
W	6.61	0.69	1700	••
Au	6.34	0.62	1050	20 10—30
Ag	6.14	0.60	950	22 16—30
Al	5.94	0.57	850	12 8—13
Мо	6.91	0.62	1550	
Si	5.35	0.42	Sehr hoch	• •
Li	6.59	0.26	183	• •
U	6.65	0.52	1500	• •
Cd	6.16	0.47	500	3.5 2.3-4.8
As	5.63	{0.31	210	• •
		(0.43	(flüchtig)	• •
Ge	6.40	0.41	Unbestimmt	(FC - 11.1 - 11.1 - 14.35
Ga	5.53	0.46	30	Ziemlich zähe, mit Messer schneidbar
Mg	6.00	0.44	600	Wenig fest
Hg	6.66	0.44	-40	• •
Nb	6.40	0.42	Nicht geschmolzen	
In	6.50	$0\cdot 42$	176	Weicher als Blei, ge- schmeidig, Papier färbend
Chemie-	Heft Nr.	9.		55

	\underline{A}				
Elemente	$\overline{\Delta}$	A	Δ	S	
Schwefel	15.61	32.0	2.05	0.1764	
[Arsen	15.95]	[Phosphor im	Mittel 15:42]		
Zinn	16 39	118.0	$7 \cdot 2$	0.0548	
Tantal	16.89	$182 \cdot 5$	10.8	0.035	theoretisch
Thallium	17.14	204.0	11.9	0.0336	
Phosphor	$\begin{cases} 17.43 \\ 13.42 \end{cases}$	30.95	$ \begin{cases} 1 \cdot 8 \\ 2 \cdot 3 \end{cases} $	0.1750	
Antimon	17.91	120	6.7	0.0492	
Selen	17.95	79.0	$4 \cdot 4$	0.0880	
Blei	18.12	206.6	11.4	0.0310	
Tellur	20.28	127.8	6.3	0.0495	
Thorium	21.91	232.0	11.0	0.0276	
Wismuth	21.22	208.0	9.8	0.0308	
Cerium	21.79	141.5	$6 \cdot 5$	0.0448	
Zirkon	21.81	90.5	$4 \cdot 25$	0.0680	
Didym	22:31	145.0	$6 \cdot 5$	0.0456	
Lanthan	$22 \cdot 35$	138.2	$6 \cdot 2$	0.0449	
Natrium	23.61	23.0	0.97	0.2934	
Calcium	$25 \cdot 47$	40.0	1.57	0.1704	
Jod	$25 \cdot 71$	127.0	4.94	0.0541	
Chlor	25.82	35.4	1.37	0.1800	
Brom	26.60	79.8	3.00	0.0850	
Strontium	34.68	87.4	2.52	0.0740	
Barium	36.05	137.0	3.80	0.0470	
Kalium	45.58	39.1	0.86	$0 \cdot 1655$	
Rubidium	56.12	85 3	1.52	0.0770	
Cäsium	70.59	$132 \cdot 7$	1.88	0.0480	(berechnet)
			er atmosphäri- hen Luft ==1		
Chlor, Gas	14.76	$35 \cdot 4$	2.450	0.1214	
Fluor	14.47	19.0	1.313	0.267	hypothetisch
Wasserstoff	14.49	1	0.0695	3.4046	
Sauerstoff	14.32	15.87	1.1056	0.2182	
Stickstoff	14.44	14.05	0.9714	0.2440	
		Δ d	es Wassers == 1		
Davyum, Da	15.96	150.2	9.39 1		
Erbium, E		166	• •		
Scandium, Sc	14	44	3.1		
Ytterbium, Yb		173			
Yttrium, Y		89.6			
1 0 005 1	. 050				

^{1 9·385} bei 25°.

As	$\Delta_{\mathcal{S}}$	t K
S5.63	0.36	114 /
[As Mi		
Sn6·49	0.40	3.0 1.7 - 4.3
Ta6·39	0.38	Nicht geschmolzen
T16.85	0.40	290
P5·43	∫0.31	44
	(0.40	
Sb5.90	0.33	440 $0.68 0.65 - 0.70$
Se6·32	0.32	217
Pb6·41	0.35	330 1.8 1.3-2.4
Te6 34	0.35	455
Th6.40	0.30	{ 1200 (?) (berechnet) · ·
Bi 6 · 39	0.30	275 0.97
Ce6·35	0.30	600
Zr6·15	0.29	Höher als bei Si .
Di 6 · 61	0.30	500
La6.24	0.28	500
Na 6:75	0.28	97 Wenig fest
Ca6·74	0.27	• •
J 6 · 36	0.27	114
Cl6·37	0.25	 75
Br 6 · 80	0.26	-7 :3
Sr.,6·46	0.19	500 (?)
Ba6•44	0.18	475
K6.63	0.15	62 Wenig fest
Rb6.56	0.12	38
Cs6·40	0.08	27
C10·297	0.297	• •
F10·250	0.351	sehr nieder
H0.235	0.238	-200° Pictet
O0·241	$0 \cdot 242$	—200 Wroblewski
N0·236	0.237	—203 »

Andere Elemente sind noch

```
Decipium, Dp; Terbium, Tb, A=163-163\cdot8 (C. R. 102); Mosandrium, Ms, soll=Y\alpha+Tb sein; Y\alpha=Gadolinum, Gd, nach Marignac; Norwegium, Ng; Russium, Ru (1888):
```

Samarium, Y β (?), A = 150 (Clève);

Thulium, Tl. Ferner zerfällt (nach Weisbach) das Didym in Praseodym, $A=143\cdot 6$ und Neodym, $A=140\cdot 8$.

Tabelle Extreme der in Tabelle I

Elemente		Δ	S	
Kohlenstoff:	Holzkohle Gaskohle Graphit Diamant	1·45—1·7 1·885 2·17—2·32 3·49—3·53	Holzkohle 0—24° 0—224 Graphit 100 977 15—1040	0·1653 0·2385 H. F. 0·1604 Weber 0·4670 0·366 Dawes
			Diamant —50 +10 140 985	0.0635 0.1128 H. F. 0.2218 Weber 0.4589
Bor:	Schwarze I	•	Amorph 18—48°	0.2540 Kopp
	Calle a 17 urra	2.54	Krystall. 0—108	0.2520 Dana
	Gelbe Krys		Krystall etwas Al e	
ים מי		2.62	233	0.2382 H. F. 0.3663 Weber
Beryllium		2.13	0—100 0—300	0.5060 Nilson 0.5820
Nickel		8.6-9.1	 1497	0·1035 Dulong 0·1092 Regnault
Kobalt		8.4-9.2	997	0.1067
Mangan		8.0-8.1	14—97	0·1217 u. 0·1441 unrein, Regnault
Kupfer		8.8-8.95	0-100	0.0951 Regnault 0.0920 Kopp
Eisen		7.79-8.01	0° 100 1400 4—27	0·1116 Byström 0·1138
Chrom		6.2-6.9	22—51	0.0998 Kopp 0.1200
Rhodium		11.2-12.4	10-97	0.0580 Regnault
Iridium	······	21.5-22.42	0—100 0—1400	0.0323 Violle 0.0401 »
Ruthenium		11.3-12.86	0-100	0.0611 Bunsen
Osmium,		22.45-23.0	20—100°	0.03063 Regnault 0.03113

II.

enthaltenen Constanten.

Ele-						
mente	= t		α			ε
C	unbekannt	Diamant	0.0000013	Landolt	•	
		»	0.00000118	Fizeau		
		Graphit	0.0000080	Landolt		

Во	unbekannt	• •				
Ве	unter 960	• •				
	Carnelley 900 (?)					
Ni	1400—1600	0.0000128	Fizeau			
Co	1500 - 1800		>			
Mn	1600—1900	• •				
Cit	10541093	∫0.0000168 Kopp	0.0000175 }0.	0000803	Wert-	0.0000070
		0.0000168 Kopp 0.0000189 Dulong				
Fe	15001600	{0.0000116 Borda 0.0000144 Trough.	0.0000120 {0.	0000480	Werth.	0:0000520
		(0.0000144 Trough.	(0.	0000545	Weisb.	0 0000020
Cr	1500—1800					
Rh	1750—2000	(0.000000 F)	0.0000085 Fiz	eau		
Ir	1950 - 2200	(0.0000068 Fizeau (0.0000071 »	0.0000069		••	
Ru	1800	{0.00000767 Fizeau (0.00000991 »	0.0000090		٠.	
	2500 Carn.		0.0000066 Fize	eau		

Elemente	Δ		s
Palladium1		0—100 0—1260	0.0592 Regn. (0.0582 0.0714 Violle (0.0840 Oswald
Platin2	21 · 322 · 5	0—100 0—1180	0.0325 Violle 0.0388 »
Zink	6.9-7:3	20—50 0—100 und	0.0932 Kopp 0.0909 Béde 0.0935 Bunsen (0-100) 0.0956
Titan	5.28-5.30		0.1300 Meyer
Vanadium	5.5		0·1250 (?) berechnet
Wolfram	18.8-19.3	6 - 15	0·0350 Del. u. Marc. 0·0364
Gold	19:3-19:6	0-100 12-1000	0 0316 Violle 0·0324 Regn.
Silber1	10.48—10.51	0-100	0.0559 Bensen 0.0604 Nacc.
Aluminium	2.56-2.67	20-50	0·2020 Kopp
		15—100 und	0·2122 Regn. 0·2253
Molybdän	8.6	5 — 15	0·0659 De la Rive 0·0722
Silicium	2 • 49	bei 22 0—100 0—200	0·1700 H. F. Weber 0·1940 » 0·2020 »
Lithium	0.59	27—100	0.9408 Regn.
Uran	18.5—18.7		0.0277 Zimmermann
Kadmium	8.6-8.69	0-100	0.0548 Bunsen 0.0557
	lzen 4·71 kr	morph 21—65° ystall, 31—68	0.0758 Wüllner 0.0830 »
Germanium	5.46		0.0750 berechnet
Gallium	5.96	12—13	0.0790 Bertholet
Magnesium	1.74	106—119 flüssig 20—50	0·0802
Quecksilber	13.55-13.6	0 -60 - +40 $5 - 50$	0·2499 0·0318 Regn. 0·0333 Kopp

```
Ele-
mente
    1370 - 1500
                  (0.0000090 Fizeau
                                                 (0.0000850 Werth.
                                     0.0000106
                                                                    0.0000936
     1500 Carr.
                  0.0000118
                                                 0.0001022
Pt
     1780 Violle
                  ∫0.0000075 Trough.
                                                 0.0000544 Werth.
                                     0.0000090
                                                                     0.0000566
     bis 2500
                  10.0000099
                                                 0.0000587
                  (0.0000294
                                                 (0.0001037 Werth.
Zn
    410 - 423
                                     0.0000296
                                                                    0.000130
                  0.0000311 Smeat.
                                                 l 0 0001475 Weisb.
          nicht
Ti
       geschmolzen
Va
W
        sehr hoch
                  (0 0000140 Ellic.
                                                 ∫0.0001230 Werth.
     1035 - 1097
                                     0.0000148
                                                                    0.0001560
                  (O 0000155 Lapl.
                                                 l 0·0001791
                 (0.0000191 Lapl.
                                                 (0.0001360 Werth.
A
     916 - 1040
                                     0.0000198
                                                                    0.0001380
                  l 0·0000208 Trough.
                                                 0.0001400
Al
     700-1300
                 (0.0000222 Winn.
                                                 (0.0001350 Weisb.
                                     0.0000227
                                                                    0.0001410
     850 Carn.
                 0.0000235 Land.
                                                 0 0001469
     1500 - 1600
      sehr hoch
                 (0.00000267 Fizeau 0 00000276
Si
       sehr hoch
                  0.00000780 Land.
Li
      180 - 183
    Niedriger als Fe
    (Zimmermann)
Cd
      315 - 360
                 (0.0000307 Fizeau
                                                 ∫0.0001884 Werth.
                                    0.0000310
                                                                    0.0002166
                0.0000313 Kopp
        bis 500
                                                 0.0002488
                 (0.0000056 Fizeau
         210
As
                 0.0000060 Land.
     Bei sehr
 schwacher Glüh-
  hitze (Carn.)
Ge
    30 ∫ Berthol.
Ga
       Carn.
Mg
      450 - 750
                 (0.0000269 Fizeau
                                    0.0000274
      750 Carn.
                 0.0000276
Hg
       --39.5
                  bei 2-2.2° 0.0001741 (cubisch, Militzer)
                   » 10—30 0·0001795 (
                   » 50—100 0·0001810 (
                                                         )
```

Elem	ente	Δ		S
Niobium		6.3		0.0670 (?) berechnet
Indium	7	·2-7·42	0-100	0.0569 Bunsen
Schwefel	(amorph 1 ' krystall. 1 '	92—2·06 96—2·075	16-97° geschmolz 17-45 krystall. 117-146 flüssig	en 0·1764—0·1844 Regn. 0·1630 Kopp 0·2346 Person
Zinn	7 •	18-7.30	0—100 230—350 flüssig	0.0545 Kopp 0.0637
Tantal)·4—10·78		0.035 berechnet
Thallium .	11	8-11.9	17—100	0.0336 Regn.
Phosphor	_	76	0° gewöhnl. gelb 13—36 49—98° flüssig 15—98 roth	0·1690 Regn. 0·1788 Pers. 0·202 Kopp 0·2045 Pers. 0·1698 Regn.
Antimon .	6	62-6.75	13—100° 12—200	0·0486 Bède 0·0507 »
Selen	krystall. 4 amorph	4·5—4·8 4·2	22 - 60 krystall. 18—38 amorph. 21—57	0.0840 Wüllner 0.0953 » 0.1123 » 0.0762 Regn.
Blei	11	·35—11·45	78—11 19—48 340—450 flüssig	0.0306 Regn. 0.0314 » 0.0402 Person
Tellur	6.	2-6.25	21-50 destillirt	0·0475 Kopp illirt 0·0516 Regn.
Thorium	10	.6-11.1		0.0276 Nilson
Wismuth.	9.	73-9.93	9—102 20—48 280—380 flüssig	0·0297 Bède 0·0303 Kopp 0·0363 Person
Cerium	∴ €	3.2-6 7	0-100	0.0448 Hillebr.
Zirkon		4.15	0-100	0 0660 Dana 0.0700
Didym	6	•5-6 54	0-100	0.0456 Hillebr.
Lanthan .	e	3·1—6·2	0-100	0.0449 *

```
Ele-
mente t
Nb { ? nicht
    geschmolzen
              (0.0000417 Fiz.
   176 Carn.
                                  0.0000438
               lo 0000459 »
              (0.0000641 Fiz.
    111 - 115
              (0.0000813 (Spring.)
                                    kryst.
               ∫0.0000194 Lapl.
                                               (0.0002397 Werth.
                                  0.0000227
    228 - 236
                                                                 0.0002550
               0.0000256 Stampfer
                                               0.0002700
    geschmolzen
              (0.0000302 Fiz.
Th 290 Carn.
                                  0.0000308
              0.0000313 «
              (0.0000120 Kopp
P 44.2 farblos
               0.0000148 Ermann
 255 roth
               ( 0·0000068 Pisati
                                               § 0.0002076 Werth. 0.0002628
              ∫0.0000108 Smeat.
                                  0.0000112
               (0·0000115 Fiz.
                                               0.0003181
              (0 0000368 Fiz.
Se 150-250
              0.0000379 »
0.0000666 Spring.
    217 Carn.
              (0.0000272 (?)
0.0000285 (Dan.)
                                              § 0.0005546 Werth. 0.0005580
                                  0 0000298
                                               0.0005634 *
              (0.0000312 Kopp
              0.0000168 Fiz.
Te 455 (?) Carn.
              0.0000370 Spring.
      fast unschmelzbar,
    verbrennt bei Rothgluth
                                               (0.0003040 Werth. 0.0003542
                                0.0000130
             ∫0.0000121 Fiz.
              0.0000139 »
                                               0.0004044 »
        Über 437
   unter 1000 (Carn.)
Zr höher als (0.00000233 Fiz. Je nach der Axen-
   Si (Carn.) 10.00000444 » richtung verschieden
   (geschmolzen
La
    sehr hoch
```

H. Fritz,

Elemente Δ		3
Natrium bei 4° 0.984 » 15 0.0972	-28-6°	0.2934
Calcium 1 · 56—1 · 58 bei 15° 1 · 88 Setterb.	0-100	0·1804 Bunsen 0·1670
Jod 4 · 94 — 4 · 95	9-98	0.0541 Regn.
Chlor flüssig 1·33—1·38 gasförmig 2 45 (Luft-)	•••	0·1214 ? 0·1800 Meyer
Brom 2.97—3.12	7820 fest	0.0843 Regn.
	+13-45 flüssig 13-58	0·1071 Andrews 0·1129 »
Strontium2.50—2.54		0.0740
Barium3·75-4·00		0 0470
Kalium0.86-0.87	78 0	0·1655 Regn.
Rubidium 1.52		0.0770
Cäsium 1·88		0.0480 (?) berechnet

Änderung der speci-

nach Tomlison
Kohlenstoff
Bor
Nickel
Kupfer0.09008 $+0$ 0000648 t
Eisen0 · 10600-+0 · 0001452 t
Platin
Zink $0.09009+0.0000748 t$
Gold
Silber $\begin{cases} 0.05466 + 0.0000436 t \\ 0.09411 + 0.0000106 t \end{cases}$
(0.09411 + 0.0000106t)
(für deutsches Silber, sagt Tomlison)
Aluminium 0 20700-+0.0002304 t
Silicium
Kadmium
Zinn 0 05231+0.0000722 t
Antimon
Blei0:02998+0:0000306 t
A. Naccari bestimmte zwischen 15 und 320°.

Elemente	t	α	ε
Na	90—97°	0.0000711 (Hagen)	
Cahö	her als Sr (Car.)		
J			
Br	7·3		•
C., 1, 2	than all Da (Can)		
	her als Ba (Car.)	•	
Ba		•	
K		0:0000842 (Hagen)	
Rb	38 —38· 5		
Cs	$26 \cdot 5 - 27$	•	

fischen Wärme (s).

nach Naccari

- 0·1520+0·000321 t (H. F. Weber) (0-977°)
- 0.2148+0.000650 t (H. F. Weber) (0-233)
- 0·10427-+0 000907 t
- 0.09205 + 0.000231 t
- 0.10442 + 0.001029 t
- 0.09070 + 0.000490 t
- 0.05449+0.000393 t
- 0.2116 + 0.000449 t
- 0.1581+0.000193 (H. F. Weber) (0-232°)
- 0.05461 + 0.000433 t
- 0.04864 + 0.000344 t
- 0.02973 + 0.000457 t